Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Возведение в натуральную степень





Пример 8.

- результатом извлечения корня будет тоже комплексное число, т.е.

Наша задача найти x и y.

По определению корня имеем:

Из условия равенства двух комплексных чисел (см. пример 3) имеем:

Û Решаем полученную систему:

Используя теорему Виета, получаем:

если если x2 =-1, то –y2 =-4 этот случай невозможен

т. к. , то выбираем значения х и у с разными знаками, т. е.

- если х=2, то у=-1, Þ

- если х=-2, то у=1Þ

Ответ:

3.2. Геометрическая форма

z=a+вi – этому числу соответствует упорядоченная пара чисел (а; в), а значит точка М (а; в) или вектор ОМ (а; в).

Геометрически комплексные числа, есть точка координатной плоскости или радиус-вектор т. М (а; в), где «а»- действительная часть комплексного числа, а «в» - коэффициент мнимой части комплексного числа.

Пример 9.

Можно сделать вывод, если a=0, то z=вi – чисто мнимые числа расположены на оси (OY) – которую иногда называют мнимой осью, а все действительные числа (если в=0), находятся на оси (OX) – её называют действительной осью.

Выполнение действий над комплексными числами в геометрической форме ограничены: сложение, вычитание, умножение на число и скалярное и векторное произведение. Эти действия выполняются как действия над векторами, которые мы рассматривали в теме векторы.

Геометрическая форма нам необходима для перехода от алгебраической формы и тригонометрической.

3.3. Тригонометрическая форма

Рассмотрим на рис. 2 треугольник ONM – прямоугольный. Величина угла MON равна φ (фи), = r =

φ – аргумент комплексного числа, r - модуль комплексного числа

Формулы, выражающие зависимость между a; в и r; φ;.

Пусть нам дано комплексное число , умножим и разделим это число на r(r> 0) от этого значение комплексного числа не изменится.

получим тригонометрическую форму комплексного числа, где ,

вычисляется по формулам

 

Пример 10. Получить тригонометрическую форму комплексного числа Изображаем графически это число

 

 

 

Пример 11.

В тригонометрической форме легче выполнить действия умножение, деление, возведение степень и извлечение корня. Для этого используются формулы:

При умножении :

При делении :

При возведении в степень:

формула Муавра (А. Муавр (1667-1754) англ. математик)

При извлечении корня n-ой степени: , где k=0; 1; 2; …n-1

Пример 12.

Преобразуем число -1 в комплексную форму: ; ; в=0

j=p

-1=1× (cosp+i sinp)

, где k=0, 1, 2, 3, 4

если k=0, то

если k=1, то

если k=2, то

если k=3, то

если k=4, то

Примечание: имеет ровно n значений, которые получаются при значениях k=0; 1; 2; …n-1.

 

Пример 13.

Найти все корни уравнения х3-8=0.

Уравнение nй степени имеет ровно n корней, значит это уравнение имеет три корня.

х3=8 , представим число 8 в тригонометрической форме.

8=8+0i; а=8; в=0; ; j=0; 8=8× (cos0+i sin0)

если k=0, то х1=2× (cos0+i sin0)=2(1+i× 0)=2+0i

если k=1, то

если k=2, то

Ответ: х1=2; х2, 3=-1±i

3.4. Показательная форма

По известному замечательному пределу е, аналогично еz, где z=a+вi; еz=eai

Существует доказательство формулы:

еzа+вi=ea× (cos в+sin в), если а=0, то формула принимает вид:

еzвi=e0(cos в+isin в)=, т.е. евi=cos в+isin в - формула Эйлера.

По формуле Эйлера при условии в=j имеем: cosj+isinj=eij.

Умножим обе части на .

r× (cosj+i sinj)=r× eij -есть формула перехода от тригонометрической формулы в показательную.

Пример 14 (продолжение примера 10).

Пример 15 (продолжение примера 11).

Действия над комплексными числами в показательной формуле.

Умножение: .

Деление: .

Возведение в степень: .

Извлечение корня: , где k=0; 1; 2; …n-1.

Пример 16.

;

если k=0, то

если k=1, то

если k=2, то

если k=3, то

Ответ:







Дата добавления: 2014-10-22; просмотров: 872. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия