Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Возведение в натуральную степень





Пример 8.

- результатом извлечения корня будет тоже комплексное число, т.е.

Наша задача найти x и y.

По определению корня имеем:

Из условия равенства двух комплексных чисел (см. пример 3) имеем:

Û Решаем полученную систему:

Используя теорему Виета, получаем:

если если x2 =-1, то –y2 =-4 этот случай невозможен

т. к. , то выбираем значения х и у с разными знаками, т. е.

- если х=2, то у=-1, Þ

- если х=-2, то у=1Þ

Ответ:

3.2. Геометрическая форма

z=a+вi – этому числу соответствует упорядоченная пара чисел (а; в), а значит точка М (а; в) или вектор ОМ (а; в).

Геометрически комплексные числа, есть точка координатной плоскости или радиус-вектор т. М (а; в), где «а»- действительная часть комплексного числа, а «в» - коэффициент мнимой части комплексного числа.

Пример 9.

Можно сделать вывод, если a=0, то z=вi – чисто мнимые числа расположены на оси (OY) – которую иногда называют мнимой осью, а все действительные числа (если в=0), находятся на оси (OX) – её называют действительной осью.

Выполнение действий над комплексными числами в геометрической форме ограничены: сложение, вычитание, умножение на число и скалярное и векторное произведение. Эти действия выполняются как действия над векторами, которые мы рассматривали в теме векторы.

Геометрическая форма нам необходима для перехода от алгебраической формы и тригонометрической.

3.3. Тригонометрическая форма

Рассмотрим на рис. 2 треугольник ONM – прямоугольный. Величина угла MON равна φ (фи), = r =

φ – аргумент комплексного числа, r - модуль комплексного числа

Формулы, выражающие зависимость между a; в и r; φ;.

Пусть нам дано комплексное число , умножим и разделим это число на r(r> 0) от этого значение комплексного числа не изменится.

получим тригонометрическую форму комплексного числа, где ,

вычисляется по формулам

 

Пример 10. Получить тригонометрическую форму комплексного числа Изображаем графически это число

 

 

 

Пример 11.

В тригонометрической форме легче выполнить действия умножение, деление, возведение степень и извлечение корня. Для этого используются формулы:

При умножении :

При делении :

При возведении в степень:

формула Муавра (А. Муавр (1667-1754) англ. математик)

При извлечении корня n-ой степени: , где k=0; 1; 2; …n-1

Пример 12.

Преобразуем число -1 в комплексную форму: ; ; в=0

j=p

-1=1× (cosp+i sinp)

, где k=0, 1, 2, 3, 4

если k=0, то

если k=1, то

если k=2, то

если k=3, то

если k=4, то

Примечание: имеет ровно n значений, которые получаются при значениях k=0; 1; 2; …n-1.

 

Пример 13.

Найти все корни уравнения х3-8=0.

Уравнение nй степени имеет ровно n корней, значит это уравнение имеет три корня.

х3=8 , представим число 8 в тригонометрической форме.

8=8+0i; а=8; в=0; ; j=0; 8=8× (cos0+i sin0)

если k=0, то х1=2× (cos0+i sin0)=2(1+i× 0)=2+0i

если k=1, то

если k=2, то

Ответ: х1=2; х2, 3=-1±i

3.4. Показательная форма

По известному замечательному пределу е, аналогично еz, где z=a+вi; еz=eai

Существует доказательство формулы:

еzа+вi=ea× (cos в+sin в), если а=0, то формула принимает вид:

еzвi=e0(cos в+isin в)=, т.е. евi=cos в+isin в - формула Эйлера.

По формуле Эйлера при условии в=j имеем: cosj+isinj=eij.

Умножим обе части на .

r× (cosj+i sinj)=r× eij -есть формула перехода от тригонометрической формулы в показательную.

Пример 14 (продолжение примера 10).

Пример 15 (продолжение примера 11).

Действия над комплексными числами в показательной формуле.

Умножение: .

Деление: .

Возведение в степень: .

Извлечение корня: , где k=0; 1; 2; …n-1.

Пример 16.

;

если k=0, то

если k=1, то

если k=2, то

если k=3, то

Ответ:







Дата добавления: 2014-10-22; просмотров: 872. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия