ТЕМА 5. Расперделения хи – квадрат и Стьюдента
В данной теме будет рассмотрены распределения, которые не рассматривались ранее, но играют большую роль в математической статистике, в частности, при построении доверительных интервалов и проверке статистических гипотез. Определение. Пусть случайные величины независимы и каждая из них имеет нормальное распределение с параметрами 0, 1 (обозначается ), то есть при всех выполняется равенство . Тогда говорят, что случайная величина , определенная равенством , имеет распределение -квадрат с n степенями свободы (обозначается ). Теорема. Если случайная величина имеет распределение , то для ее характеристической функции выполняется равенство . Эту теорему примем без доказательства. Теорема (теорема сложения для распределения ). Пусть случайная величина имеет распределение -квадрат с степенями свободы (), случайная величина имеет распределение -квадрат с степенями свободы (), и независимы. Тогда сумма данных случайных величин + имеет распределение -квадрат с числом степеней свободы (). Доказательство. Поскольку случайная величина имеет распределение , то справедливо соотношение . Так как случайная величина имеет распределение , то справедливо соотношение . Из независимости случайных величин и вытекает равенство . Таким образом, получаем: . Получили характеристическую функцию распределения . Так как характеристическая функция полностью определяет распределение, то из полученного равенства вытекает, что случайная величина + имеет распределение -квадрат с числом степеней свободы , что и требовалось доказать. Определение. Пусть случайные величины независимы, и каждая из них имеет нормальное распределение с параметрами 0, 1. Тогда говорят, что случайная величина имеет распределение Стьюдента с n степенями свободы (). Замечание. Исходя из определения распределения , распределение Стьюдента можно было определить следующим образом. Определение 2. Пусть случайные величины и независимы, имеет нормальное распределение с параметрами 0, 1, имеет распределение -квадрат с n степенями свободы. Тогда говорят, что случайная величина имеет распределение Стьюдента с n степенями свободы. Замечание. И распределение -квадрат, и распределение Стьюдента табулированы, поэтому в практических расчетах пользуются не формулами для их характеристических функций, плотностей и функций распределения, а таблицами.
|