ТЕМА 7. Доверительные интервалы и примеры их построения
Когда мы строим «точечную» оценку неизвестного параметра генеральной совокупности , то, даже если она обладает всеми хорошими свойствами (несмещенность, состоятельность, эффективность), то все равно практически никогда не будет выполняться равенство . Поэтому возникла идея не оценивать неизвестный параметр одним числом , а строить интервал со случайными границами, содержащий неизвестный параметр с заранее заданной вероятностью , близкой к 1. Такие интервалы называются доверительными интервалами. Дадим точное определение доверительного интервала. Определение. Пусть распределение генеральной совокупности зависит от неизвестного параметра , и - две измеримые функции выборки, удовлетворяющее условию , . Тогда интервал со случайными границами называется доверительным интервалом для параметра с уровнем доверия , если выполняется условие . Замечание. Значение уровня доверия берется близким к 1, например, ; ; ; . Рассмотрим примеры построения доверительных интервалов. Пример 1. Пусть генеральная совокупность имеет нормальное распределение с неизвестным математическим ожиданием и известной дисперсией (то есть распределение ). Построим доверительный интервал для неизвестного параметра . По теореме о распределении выборочных характеристик из нормальной совокупности случайная величина имеет распределение . Следовательно, случайная величина имеет распределение . Отсюда для любого получаем равенство , где - функция Лапласа, определяемая равенством . Следовательно, если задать , то по таблицам функции Лапласа можно найти число , для которого выполняется равенство или . Проведя элементарные преобразования, получаем: . Таким образом, для любого уровня доверия по таблицам функции Лапласа можно найти такое число , для которого выполняется равенство . Это равенство означает, что интервал со случайными границами является доверительным интервалом для параметра с уровнем доверия . Замечание. Длина данного доверительного интервала равна . Она возрастает с увеличением уровня доверия и среднего квадратического отклонения и убывает с увеличением числа опытов . Пример 2. Пусть генеральная совокупность имеет нормальное распределение с известным математическим ожиданием и неизвестной дисперсией . По теореме о распределении выборочных характеристик из нормальной совокупности случайная величина имеет распределение хи-квадрат с числом степеней свободы (распределение ). Зададим уровень доверия , определим число равенством и по таблицам распределения Стьюдента найдем такие числа и , для которых выполняются равенства ; . Откуда вытекает неравенство . Преобразовав данное неравенство, получим: . Таким образом, имеем: . Данное неравенство означает, что интервал со случайными границами является доверительным интервалом для параметра с уровнем доверия . Пример 3. Пусть генеральная совокупность имеет нормальное распределение с неизвестным математическим ожиданием и неизвестной дисперсией (то есть распределение ). Построим доверительные интервалы для неизвестных параметров и . Поскольку доверительный интервал для параметра , построенный в примере 2, не содержит неизвестного параметра , то его можно использовать и в данном случае. Доверительный интервал для параметра содержит неизвестное в данном случае среднее квадратическое отклонение , поэтому сейчас мы его использовать не можем. Для построения доверительного интервала для параметра воспользуемся теоремой о распределении выборочных характеристик нормальной совокупности. По этой теореме случайная величина имеет распределение Стьюдента с числом степеней свободы (распределение ). Следовательно, по заданному уровню доверия по таблицам распределения Стьюдента можно найти такое число , для которого выполняется равенство . Проведя преобразования, аналогичные преобразованиям примера 1, получим равенство . Данное равенство означает, что интервал со случайными границами является доверительным интервалом для параметра с уровнем доверия .
|