Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕМА 6. Распределение выборочных характеристик нормальной совокупности





В данной теме будет рассмотрена нормальная генеральная совокупность и найдено распределение ее важнейших характеристик. Полученные результаты будут широко применяться при построении доверительных интервалов и проверке статистических гипотез. Поскольку доказательство некоторых фактов требует глубокого знания линейной алгебры, в частности, теории квадратичных форм, часть утверждений следующей теоремы будет приведена без доказательства.

Теорема (о распределении выборочных характеристик нормальной совокупности).

Пусть генеральная совокупность имеет нормальное распределение с параметрами (), - выборка объема n из данной генеральной совокупности, - эмпирическое среднее, - эмпирическая дисперсия, . Тогда справедливы следующие утверждения:

1) и независимы,

2) имеет нормальное распределение с параметрами (),

3) имеет распределение -квадрат с n-1 степенью свободы (),

4) имеет распределение Стьюдента с n-1 степенью свободы ().

Доказательство.

1) Данное утверждение примем без доказательства.

2) Поскольку можно рассматривать как независимые случайные величины, имеющие то же распределение, что и генеральная совокупность , то выполняются соотношения . Поскольку каждая , имеет нормальное распределение, то их линейная комбинация также имеет нормальное распределение. Найдем параметры этого распределения. Имеем:

,

.

Следовательно, имеет нормальное распределение с параметрами и второе утверждение теоремы доказано.

3) Данное утверждение примем без доказательства.

4) Так как из второго утверждения теоремы имеет нормальное распределение с параметрами , то случайная величина имеет нормальное распределение с параметрами 0, 1. Действительно, нормальность данной случайной величины вытекает из нормальности . Далее имеем:

, .

Из третьего утверждения теоремы случайная величина имеет распределение . Тогда по определению 2 распределение Стьюдента случайная величина имеет распределение . Преобразуем данную случайную величину. Имеем: .

Таким образом, действительно случайная величина имеет распределение Стьюдента с n-1 степенью свободы.

Доказательство теоремы завершено.

 

Контрольные вопросы

1) Как определяются моменты случайной величины и от чего они зависят?

2) Как определяются эмпирические моменты и от чего они зависят?

3) В чем состоит основная идея метода моментов?

4) Чему равна оценка параметра распределения Пуассона, найденная по методу моментов? Совпадает ли она с оценкой этого же параметра, найденной по методу наибольшего правдоподобия?

5) Чему равна оценка параметра показательного распределения, найденная по методу моментов? Совпадает ли она с оценкой этого же параметра, найденной по методу наибольшего правдоподобия?

6) Каким свойством логарифма руководствуемся, переходя от функции правдоподобия к ее логарифму?

7) Всегда ли оценку наибольшего правдоподобия можно находить с помощью уравнения правдоподобия?

8) Всегда ли решение уравнения правдоподобия дает оценку наибольшего правдоподобия?

9) Каким условиям должны удовлетворять случайные величины для того, чтобы случайная величина имела распределение ?

10) Каким условиям должны удовлетворять случайные величины для того, чтобы случайная величина имела распределение ?

11) Каким условиям должны удовлетворять случайные величины и для того, чтобы случайная величина имеет распределение ?

12) Как формулируется теорема сложения для распределения ?

13) Если имеет распределение , то какое распределение имеет эмпирическое среднее ?

14) Если имеет распределение , то какая функция от имеет распределение

15) Если имеет распределение , то какая функция от имеет распределение ?

 







Дата добавления: 2014-11-12; просмотров: 827. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия