Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1. Пространство V3. В этом пространстве вся­кие три некомпланарных вектора линейно независимы, а всякие че­тыре вектора линейно зависимы





1. Пространство V 3. В этом пространстве вся­кие три некомпланарных вектора линейно независимы, а всякие че­тыре вектора линейно зависимы. Следовательно, .

2. Пространство Rn. В этом пространстве всякие вектор линейно зависимы и существуют системы из n линейно независимых векторов, например, система векторов (2). Следовательно,

Если в линейном пространстве X существует базис из n векторов, то , обратно, если , то вся­кая система из n линейно независимых векторов образует базис пространства X.

Всякие два базиса и пространства X связаны между собой симметричными формулами

(2.4)

(2.5)

где невырожденные матрицы и являются взаимно обратными, i -й столбец матрицы A образуют координаты вектора в базисе из векторов . Формулы (2.4) и (2.5) называются формулами перехода, матрицы A и матрицами перехода.

Если и – координаты вектора в базисах и , соответственно, то

(2.6)

(2.7)

Пример: Доказать, что каждая из данных двух систем векторов является базисом R 3 и найти связь координат одного и того же вектора в этих двух базисах:

Для доказательства того, что данные системы векторов являются базисными, вычислим, как и в предыдущем примере, ранги матриц

и

Нетрудно убедиться, что , и, следовательно, в R 3 данные системы векторов образуют базисы. Для определения связи координат необходимо получить формулы перехода (2.4) и (2.5). Имеем

Откуда получаем систему девяти скалярных уравнений

Решая системы уравнений, получаем матрицу перехода

и связь между «старыми» и «новыми» координатами:

Задачи

1. Доказать, что если система векторов содер­жит нулевой вектор, то совокупность векторов линейно зависима.

2. Доказать, что если часть из векторов линейно зависима, то и вся эта совокупность векторов линейно зависима.

Векторы и заданы своими координатами в некотором базисе. Показать, что векторы сами образуют базис и найти координаты вектора в этом базисе:

3.

, , ,

4.

, , ,

5.

, , , ,

6. Доказать, что каждая из двух систем векторов является базисом, и найти связь координат одного и того же вектора в этих двух базисах.

, , ,

, , ,

7. Доказать линейную независимость системы функций , где – попарно различные действительные числа.

8. Определить размерность линейного пространства квадратных матриц n -го порядка.

9. Как изменится матрица перехода от одного базиса к другому, если:

а) поменять местами два вектора первого базиса;

б) поменять местами два вектора второго базиса;

в) записать векторы обоих базисов в обратном порядке?







Дата добавления: 2015-10-19; просмотров: 2622. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия