Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1. Рассмотрим пространство геометрических векторов V3





1. Рассмотрим пространство геометрических векторов V 3. В нем два вектора линейно зависимы, когда они коллинеарны; три вектора линейно зависимы, когда они компланарны. Всякие четыре вектора этого пространства всегда линейно зависимы.

2. Рассмотрим арифметическое пространство Rn. Попытаемся построить линейно независимую систему векторов этого пространства. Рассмотрим k векторов

,

Если линейно зависимы, то одновременно такие, что

где – ноль пространства Rn. По определению Rn отсюда следует, что

,

Получаем в результате относительно ti систему n линейных однородных уравнений с k неизвестными и матрицей размера . Такая система имеет только нулевое решение, если

и имеет ненулевое решение, если

Отсюда следует, что в пространстве Rn не может быть больше, чем n линейно независимых векторов. Линейно независимыми являются всякие векторы, компоненты которых образуют матрицу полного ранга. Например, n векторов

(2.2)

Определение. Совокупность линейно независимых векторов пространства X называется базисом этого пространства, если найдутся такие числа , что справедливо равенство

(2.3)

Соотношение (2.3) называется разложением вектора по базису.

В силу линейной независимости векторов базиса разложение (2.3) определяется единственным образом.

Определение. Коэффициенты разложения вектора по базису называются координа­тами вектора относительно базиса.

Пример. Совокупность векторов (2.2) образует очевидно базис пространства Rn, так как для всякого вектора имеет место разложение

При решении задач полезно помнить, что векторы линейно зави­симы тогда и только тогда, когда линейно зависимы вектор-столбцы из их координат относительно произвольного базиса.

Определение. Если в линейном пространстве X существует n линейно независимых векторов, а всякие век­тор этого пространства линейно зависимы, то число, n называется размерностью линейного пространства

Само линейное пространство X называется при этом n -мерным. Линейное пространство, в котором можно указать сколь угодно большое число линейно независимых векторов называется бесконечно мерным.







Дата добавления: 2015-10-19; просмотров: 827. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия