Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1. Рассмотрим пространство геометрических векторов V3





1. Рассмотрим пространство геометрических векторов V 3. В нем два вектора линейно зависимы, когда они коллинеарны; три вектора линейно зависимы, когда они компланарны. Всякие четыре вектора этого пространства всегда линейно зависимы.

2. Рассмотрим арифметическое пространство Rn. Попытаемся построить линейно независимую систему векторов этого пространства. Рассмотрим k векторов

,

Если линейно зависимы, то одновременно такие, что

где – ноль пространства Rn. По определению Rn отсюда следует, что

,

Получаем в результате относительно ti систему n линейных однородных уравнений с k неизвестными и матрицей размера . Такая система имеет только нулевое решение, если

и имеет ненулевое решение, если

Отсюда следует, что в пространстве Rn не может быть больше, чем n линейно независимых векторов. Линейно независимыми являются всякие векторы, компоненты которых образуют матрицу полного ранга. Например, n векторов

(2.2)

Определение. Совокупность линейно независимых векторов пространства X называется базисом этого пространства, если найдутся такие числа , что справедливо равенство

(2.3)

Соотношение (2.3) называется разложением вектора по базису.

В силу линейной независимости векторов базиса разложение (2.3) определяется единственным образом.

Определение. Коэффициенты разложения вектора по базису называются координа­тами вектора относительно базиса.

Пример. Совокупность векторов (2.2) образует очевидно базис пространства Rn, так как для всякого вектора имеет место разложение

При решении задач полезно помнить, что векторы линейно зави­симы тогда и только тогда, когда линейно зависимы вектор-столбцы из их координат относительно произвольного базиса.

Определение. Если в линейном пространстве X существует n линейно независимых векторов, а всякие век­тор этого пространства линейно зависимы, то число, n называется размерностью линейного пространства

Само линейное пространство X называется при этом n -мерным. Линейное пространство, в котором можно указать сколь угодно большое число линейно независимых векторов называется бесконечно мерным.







Дата добавления: 2015-10-19; просмотров: 827. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия