Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1. Необходимо найти условия, необходимые и достаточные для того, чтобы две прямые и пространства лежали в одной двумерной плоск





1. Необходимо найти условия, необходимые и достаточные для того, чтобы две прямые и пространства лежали в одной двумерной плоскости.

Предположим вначале, что две данные прямые лежат в одной плоскости с уравнением

где λ1, λ2 — параметры. Тогда при некоторых , , ,

 

а при некоторых , , .

Поэтому вектор принадлежит линейной оболочке векторов и . Далее для произвольной точки 1 прямой найдутся такие λ1 и λ2, что

Значит и . Аналогично . Но всякие три вектора из двумерного подпространства линейно зависимы. Следовательно, необходимым условием принадлежности прямых плоскости является линейная зависимость векторов . Обратно, пусть линейно зависимы. Тогда существуют такие λ1 и λ2, что . Поэтому уравнение второй прямой можно переписать в виде

Очевидно, что теперь оба уравнения содержатся в уравнении плоскости H:

где t и τ параметры, и, следовательно, прямые принадлежат плоскости H.

2. Найти необходимые и достаточные условия для того, чтобы две прямые и проходили через одну точку, но не совпадали.

Предположим, что при некоторых значениях параметров для первой прямой и для второй прямые пересекаются. Тогда

Отсюда следует, что векторы линейно зависимы. Данное соотношение далее можно при известных рассматривать как систему линейных уравнений (в координатной форме) на определение t 1 и t 2. Так как прямые не совпадают, то решение системы

(4.1)

единственно. Значит ранг матрицы системы равен 2 и векторы должны быть линейно независимы. Обратно пусть – линейно независимы, векторы – линейно зависимы. Тогда система (4.1) имеет и причем единственное решение. Следовательно, прямые пересекаются в единственной точке.

Задачи

1. Найти точку пересечения двух прямых и .

 

 

а)

, , ,

б)

, , ,

2. Найти прямую, проходящую через точку, заданную вектором и пересекающую прямые и , и найти точки пересечения искомой прямой с двумя данными

а) , , , ,

б) , , , ,

3. Описать все случаи взаимного расположения двух плоскостей

,

в n -мерном пространстве и указать необходимые и достаточные условия для каждого из этих случаев.

4. Доказать, что всякая система точки пространства Vn определяет плоскость размерности .

5. Доказать, что линейное многообразие может быть охарактеризовано как множество векторов, содержащее вместе с любыми двумя векторами и их линейные комбинации при любых α.

6. Найти параметрические уравнения плоскости, заданной общими уравнениями:

7. Найти общие уравнения плоскости, заданной параметрическими уравнениями в координатной форме







Дата добавления: 2015-10-19; просмотров: 2529. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия