Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ортонормированный базис евклидова и унитарного пространств





Определение. Вектор называется нормированным, если .

Определение. Два вектора и называются ортогональными, если .

Определение. Система векторов евклидова (унитарного) пространства называется ортогональной, если она либо состоит из одного ненулевого вектора, либо ее векторы попарно ортогональны. Ортогональная система, состоящая из нормированных векторов, называется ортонормированной. Для нее

Всякая ортогональная система линейно независима.

Определение. Базис евклидова (унитарного) пространства, векторы которого образуют ортонормированную систему, называется ортонормированным базисом.

Заметьте себе, что, в зависимости от того, как введено скалярное произведение, различные системы векторов могут быть или не быть ортонормированными.

Процедура ортогонализации Грама-Шмидта. Для построения ортонормированной системы векторов и, в частности, ортонормированного базиса может быть использована следующая процедура. Пусть векторы — линейно независимы. Первый вектор ортонормированной системы

Второй вектор

,

Наконец, векторы определяются соотношениями

,

Пример. Необходимо ортогонализировать систему векторов

, ,

Скалярное произведение векторов и определяется как

Для построения первого вектора считаем . Вектор

Для построения второго вектора вычислим вначале . Вектор

и вектор

Для построения третьего вектора вычислим и . Вектор

И вектор

Во всяком ортонормированном базисе унитарного (евклидова) пространства скалярное произведение векторов и с координатами и

Координаты вектора







Дата добавления: 2015-10-19; просмотров: 1353. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия