Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Евклидовы и унитарные пространства





Определение. Вещественная функция двух векторных аргументов и , заданная на линейном пространстве E, называется скалярным произведением, если выполняются следующие условия:

1.

2. , l – вещ. число

3.

4. ,

Определение. Вещественное линейное пространство E, на котором задано скалярное произведение, называется евклидовым пространством.

Пример. Рассмотрим арифметическое пространство Rn и определим скалярное произведение векторов и соотношением

Прямой подстановкой убеждаемся, что условия 1-4 выполняются. Получим n -мерное евклидово пространство, которое обычно обозначается как En.

В случае комплексного линейного пространства скалярное произведение определяется несколько иным образом.

Определение. Комплексная функция двух векторных аргументов и , заданная на комплексном линейном пространстве U, называется скалярным произведением, если выполняются следующие условия:

1.

2. , l — комплексное число

3.

4. ,

Комплексное линейное пространство U, на котором задано скалярное произведение, называется унитарным пространством.

Во всяком унитарном (евклидовом) пространстве имеет место неравенство Коши-Шварца:

с равенством лишь в случае, когда .

Введение скалярного произведения позволяет распространить на линейные пространства различные метрические понятия:

1. Норма (длина) вектора определяется как

Введенная функция удовлетворяет следующим условиям

1. ,

2.

3.

2. Угол φ между векторами и евклидова пространства определяется как угол, изменяющийся в пределах от нуля до π, косинус которого

3. Расстояние между точками аффинного пространства и , связанного с данным евклидовым, определяется как







Дата добавления: 2015-10-19; просмотров: 1199. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия