Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Евклидовы и унитарные пространства





Определение. Вещественная функция двух векторных аргументов и , заданная на линейном пространстве E, называется скалярным произведением, если выполняются следующие условия:

1.

2. , l – вещ. число

3.

4. ,

Определение. Вещественное линейное пространство E, на котором задано скалярное произведение, называется евклидовым пространством.

Пример. Рассмотрим арифметическое пространство Rn и определим скалярное произведение векторов и соотношением

Прямой подстановкой убеждаемся, что условия 1-4 выполняются. Получим n -мерное евклидово пространство, которое обычно обозначается как En.

В случае комплексного линейного пространства скалярное произведение определяется несколько иным образом.

Определение. Комплексная функция двух векторных аргументов и , заданная на комплексном линейном пространстве U, называется скалярным произведением, если выполняются следующие условия:

1.

2. , l — комплексное число

3.

4. ,

Комплексное линейное пространство U, на котором задано скалярное произведение, называется унитарным пространством.

Во всяком унитарном (евклидовом) пространстве имеет место неравенство Коши-Шварца:

с равенством лишь в случае, когда .

Введение скалярного произведения позволяет распространить на линейные пространства различные метрические понятия:

1. Норма (длина) вектора определяется как

Введенная функция удовлетворяет следующим условиям

1. ,

2.

3.

2. Угол φ между векторами и евклидова пространства определяется как угол, изменяющийся в пределах от нуля до π, косинус которого

3. Расстояние между точками аффинного пространства и , связанного с данным евклидовым, определяется как







Дата добавления: 2015-10-19; просмотров: 1199. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия