Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Евклидовы и унитарные пространства





Определение. Вещественная функция двух векторных аргументов и , заданная на линейном пространстве E, называется скалярным произведением, если выполняются следующие условия:

1.

2. , l – вещ. число

3.

4. ,

Определение. Вещественное линейное пространство E, на котором задано скалярное произведение, называется евклидовым пространством.

Пример. Рассмотрим арифметическое пространство Rn и определим скалярное произведение векторов и соотношением

Прямой подстановкой убеждаемся, что условия 1-4 выполняются. Получим n -мерное евклидово пространство, которое обычно обозначается как En.

В случае комплексного линейного пространства скалярное произведение определяется несколько иным образом.

Определение. Комплексная функция двух векторных аргументов и , заданная на комплексном линейном пространстве U, называется скалярным произведением, если выполняются следующие условия:

1.

2. , l — комплексное число

3.

4. ,

Комплексное линейное пространство U, на котором задано скалярное произведение, называется унитарным пространством.

Во всяком унитарном (евклидовом) пространстве имеет место неравенство Коши-Шварца:

с равенством лишь в случае, когда .

Введение скалярного произведения позволяет распространить на линейные пространства различные метрические понятия:

1. Норма (длина) вектора определяется как

Введенная функция удовлетворяет следующим условиям

1. ,

2.

3.

2. Угол φ между векторами и евклидова пространства определяется как угол, изменяющийся в пределах от нуля до π, косинус которого

3. Расстояние между точками аффинного пространства и , связанного с данным евклидовым, определяется как







Дата добавления: 2015-10-19; просмотров: 1199. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия