Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Простейшие методы





 

К простейшим методам можно отнести методы прямоуголь­ников (левых и правых) и трапеций. В первом случае подынте­гральная функция заменяется горизонтальной прямой = с0) со значением ординаты (т.е. значением функции) соответственно слева или справа участка, во втором случае — наклонной прямой (у=с1х+с0).

Формулы интегрирования при разбиении отрезка [ a,b ] на n частей с равномерным шагом h соответственно приоб­ретают вид:

 

• для одного участка интегрирования:

 

- метод прямоугольников

,

,

;

 

- метод трапеций

,

,

 

• для n участков интегрирования:

 

- метод прямоугольников

,

,

;

 

- метод трапеций

.

Нетрудно заметить, что в методе прямоугольников интеграл вычислится абсолютно точно только при f(x) = с (const), а в мето­де трапеций — при f(x) линейной или кусочно-линейной.

 

а) б)

а) — с 3 участками разбиения отрезка интегрирования [a, b];

б) — с 5 участками разбиения отрезка интегрирования [a, b]

Рисунок 5.1 – Иллюстрация метода левых прямоугольников

 

На рис. 5.1 для сравнения приведены примеры прямоугольни­ков при различном числе участков. Наглядно видно, что площадь всех прямоугольников на правом рисунке меньше отличается от площади под кривой f(x), чем на левом.

Метод прямоугольников не находит практического применения в силу значительных погрешностей, что тоже видно из рис. 5.1.

Рисунок 5.2 – Иллюстрация метода трапеций

 

На рис. 5.2 приведен пример вычисления интеграла методом трапеций. По сравнению с методом прямоугольников, метод трапеций более точный, так как трапеция точнее заменяет соответствующую криволинейную трапецию, чем прямоугольник.

Погрешность ε; вычисления интеграла методом трапеций при использовании двойного просчета на практике может быть опре­делена из следующего соотношения:

,

где In и In/2 соответственно значения интеграла при числе раз­биений п и n/2.

Существуют и аналитические выражения для определения погрешности, но они требуют знания второй произ­водной подынтегральной функции, поэтому имеют только теоре­тическое значение. С использованием двойного просчета можно организовать автоматический подбор шага интегрирования (т.е. числа разбиений n) для обеспечения заданной погрешности ин­тегрирования (последовательно удваивая шаг и контролируя по­грешность).

Пример. Вычислить

1) для всего интервала;

2) с делением интервала на четыре участка.

Аналитическое вычисление данного интеграла дает

I =arctg(l) – arctg(0) =0,7853981634.

В нашем слу­чае:

1) Dх=l, x0=0; x1=l;

2) Dх =0,25 (1/4), x0=0, x1=0,25, x2=0,5, x3 =0,75, x4=1,

.

Вычислим интеграл методом левых прямоугольников:

1) ;

2)

Методом правых прямоугольников:

1) ;

2)

Вычислим методом трапеций:

1) ;

2)







Дата добавления: 2015-10-19; просмотров: 563. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия