Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИНТЕГРИРОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ





Рассмотрим интегралы вида:

,где R - рациональная функция.

Такие интегралы вычисляются при помощи универсальной подстановки

. Тогда .

После подстановки интеграл примет вид где R1(t) - рациональная функция.

Интегралы вида: .

Рассмотрим 2 случая.

Случай 1

Хотя бы один из показателей - целое положительное нечетное число. Если положительное нечетное число n, то применяется подстановка Sinx = t, если

m - нечетное положительное число, то используется подстановка Cosx = t.

Случай 2

Оба показателя степени m и n - положительные четные числа. В этом случае необходимо преобразовать подынтегральную функцию с помощью формул понижения степени.

ЗАДАЧА № 18

Найти неопределенный интеграл .

=

=

ЗАДАЧА № 12

Найти неопределенный интеграл .

=

=

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Пусть функция f(x) определена на отрезке [ a, в ]. Разделим отрезок

[ a, в ] на n произвольных частей точками а = х0 < х1 < х2 <... < хn-1 < хn = в.

Выберем на каждом элементарном отрезке [ Xk-1, Xk ] произвольную точку Сk, обозначим длину элементарного отрезка через хk = xk - xk-1­.

Интегральной суммой для функции f(x) на отрезке [ a, в ] называется сумма вида

.

Определение:

Определенным интегралом от функции f(x) на отрезке [ a, в ] называется предел интегральной суммы при условии, что длина наибольшего из элементарных отрезков стремится к нулю .







Дата добавления: 2015-10-19; просмотров: 475. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия