Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕМА СУЩЕСТВОВАНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА





Если функция f(x) непрерывна на отрезке [ a, в ], то предел интегральной суммы существует и не зависит ни от способов разбиения на отрезке [ a, в ] на элементарные отрезки, ни от выборов точек на этих отрезках.

Если функция f(x) на отрезке [ a, в ] положительна, то определенный интеграл геометрически представляет собой площадь криволинейной трапеции - фигуры, ограниченной линиями

ОСНОВНЫЕ СВОЙСТВА ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

1. ; 2. ; 3. ;

4. ;

4.

ФОРМУЛА НЬЮТОНА - ЛЕЙБНИЦА

,где F(x) - первообразная функции f(x), т.е. F¢(x) = f(x).

МЕТОДЫ ВЫЧИСЛЕНИЙ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

1. Замена переменной в интеграле .

Делается подстановка х = j(t) и вычисляется дифференциал dx = j¢(t)dt. Находятся новые пределы интегрирования путем решения уравнений а = j(t),

в = j(t) относительно t. Тогда исходный интеграл примет вид:

.

2. Интегрирование по частям

где U = U(x), V = V(x) - непрерывно дифференцируемые функции на [ а, в ].

ЗАДАЧА № 20

Вычислить определенный интеграл:

1. ; 2.

 

1. =

2. =

ВЫЧИСЛЕНИЕ ПЛОЩАДИ ПЛОСКОЙ ФИГУРЫ

1. Площадь криволинейной трапеции, ограниченной кривой y = f(x) [ f(x) ³ 0 ], прямыми х = а, х = в, у = 0, вычисляется по формуле .

           
 
   
y = f(x)
   
 
 

 


 
 

 

 


2. Площадь фигуры, ограниченной кривыми у = f1(x) и y = f2(x) сверху и снизу соответственно, вычисляется по формуле: .

       
   
y =f1(x)
 
 

 


 
 

 

 








Дата добавления: 2015-10-19; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия