Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бесконечно большая функция





Пусть и в окрестности точки а, тогда функция называется бесконечно большой функцией. Обозначается .

Если функция f(x) - бесконечно большая и f(x)¹ 0 в окрестности точки а, то - бесконечно малая функция. Условные обозначения: .

Как понимать х ® + ¥;, х ® - ¥; и х ® ¥;? Будем говорить, что х ® + ¥;, если х может стать больше любого наперед заданного числа, х ® - ¥;, если х может стать меньше любого наперед заданного числа, х ® ¥;, если абсолютная величина х может стать больше любого наперед заданного числа.

Свойства пределов:

1. Предел суммы функций, состоящий из конечного числа слагаемых, равен сумме пределов.

2. Предел произведения равен произведению пределов.

3. Предел частного равен частному пределов, если предел знаменателя неравен нулю.

Например, если и , то

а) ;

б) ;

в) .

Неопределенности. Неопределенность

Рассмотрим вычисление . Подставим вместо х предельное значение 1: . Эта ситуация называется неопределенностью . Для того, чтобы вычислить , разложим знаменатель на множители

х2-1=(х-1)*(х+1), и подставим в выражение .

Рассмотрим вычисление . При стремлении х к бесконечности, многочлены в числителе и знаменателе стремятся к бесконечности, и возникает неопределенность вида . Для того, чтобы вычислить , вынесем х2 в числителе и знаменателе за скобки

= .

Замечательные пределы и следствия из них.







Дата добавления: 2015-10-19; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия