Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЧАСТНЫЕ ПРОИЗВОДНЫЕ ФУНКЦИЙ ДВУХ ПЕРЕМЕННЫХ.





Рассмотрим функцию двух переменных z = f(x, y).

Частной производной функции двух переменных z = f(x, y) по х в точке (х, у) называется предел , если он существует. Частная производная есть обычная производная от функции f(x,y), рассматриваемой как функция только от переменной х при фиксированном у.

Аналогично определяется частная производная по у в точке (х,у):

.

Если у функции существует частная производная снова по переменной х, то ее называют частной производной второго порядка от функции f(x,y) по переменной х и обозначают . Таким образом, .

Аналогично для переменной у: .

Если существует частная производная от функции по переменной у, то эту производную называют смешанной частной производной второго порядка от функции z = f(x, y) и обозначают .

В курсе высшей математики доказывается теорема о том, что если функция двух переменных определена вместе со своими частными производными в окрестности некоторой точки, причем смешанные частные производные непрерывны в этой точке, то в этом случае результат дифференцирования не зависит от порядка дифференцирования, т. е. .

ПРОИЗВОДНАЯ ПО НАПРАВЛЕНИЮ

Рассмотрим функцию двух переменных z = f(x, y). Если эта функция дифференцируема в точке (х,у), то для нее существует производная по направлению любого единичного вектора ` n0 = (Cosa, Cosb), выражаемая формулой ,

где a и b - углы, которые вектор ` n0 составляет с осями х и у.

Если же необходимо найти производную по направлению произвольного вектора ` n = a`i + в`j, то его необходимо сначала пронормировать и найти направляющие косинусы по формулам а потом воспользоваться приведенной выше формулой.







Дата добавления: 2015-10-19; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия