Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение основных алгебраических уравнений на множестве комплексных чисел





Алгебраические уравнения первой степени:

, – единственный простой корень.

Например, .

Квадратные уравнения:

,

квадратное уравнение всегда имеет два корня (различных или равных).

Нетрудно показать, что для корней квадратного уравнения всегда справедлива теорема Виета:

,

 

Примеры (решение квадратных уравнений)

;

проверка по теореме Виета:

;

, ;

проверка по теореме Виета:

Двучленные уравнения степени n:

,

двучленное уравнение степени n всегда имеет n различных корней.

Например, , , ,

, .

Алгебраические уравнения степени , не являющиеся двучленными решаются способом разложения многочлена на множители, используя для этого в том числе и теорему Безу.

Пример (решение кубического уравнения)

Решим кубическое уравнение: .

Решение

Это уравнение третьей степени имеет три корня (действительные или комплексные), при этом нужно считать каждый корень столько раз, какова его кратность. Так как все коэффициенты данного уравнения являются действительными числами, то комплексные корни уравнения, если они есть, будут парными комплексно сопряженными.

Подбором находим первый корень уравнения , так как .

По следствию из теоремы Безу имеем, что ; выполняем это деление «в столбик»:

_  
   
  _    
       
    _    
         
           
             

Представляя теперь многочлен в виде произведения линейного и квадратичного множителя, получим:

.

Другие корни находим как корни квадратного уравнения:

.

Ответ: , .

Интересной на множестве комплексных чисел является обратная задача о составлении алгебраического уравнения по известным его корням.

Пример (составление алгебраического уравнения по его корням)

Составим алгебраическое уравнение наименьшей степени с действительными коэффициентами, если известно, что числа x 1 = 3 и x 2 = 1 + i являются его корнями, причем x 1 является двукратным корнем, а x 2 — простым корнем.

Решение

Число тоже является корнем уравнения, так как коэффициенты искомого уравнения должны быть действительными. Поэтому искомое уравнение всего имеет 4 корня: x 1, x 1, x 2, , следовательно его степень равна четырем.

Составляем многочлен 4-й степени с корнями x 1, x 1, x 2, по формуле (6):


Ответ: .







Дата добавления: 2015-10-19; просмотров: 2239. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия