Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральные преобразования





В Maple имеется пакет inttrans, в котором содержатся команды различных интегральных преобразований.

 

Преобразование Фурье.

Прямое преобразование Фурье функции f (x) вычисляется по формуле

.

В Maple оно может быть найдено командой fourier(f(x),x,k), где x  переменная, по которой производится преобразование, k  имя переменной, которое следует присвоить параметру преобразования.

Обратное преобразование Фурье задается формулой

и вычисляется командой invfourier(F(k),k,x).

Описанное выше прямое и обратное преобразования Фурье называются комплексными и применяются в тех случаях, когда функция f (x) задана на всей числовой оси. Если функция f (x) задана только при х >0, то рекомендуется использовать синус- и косинус- преобразования Фурье.

Прямое и обратное синус-преобразования Фурье функции f (x) определяются формулами

и .

Поскольку формулы синус-преобразования Фурье симметричны относительно замены x на k, то в Maple эти преобразования вычисляются одной командой, но с различным порядком указания параметров: fouriersin(f(x),x,k) вычисляет прямое синус-преобразование Фурье; fouriersin(F(k),k,x)  вычисляет обратное синус-преобразование Фурье.

Аналогично, прямое и обратное косинус-преобразования Фурье функции f (x) определяются формулами

и .

В Maple эти преобразования вычисляются одной командой, но с различным порядком указания параметров: fourierсоs(f(x),x,k)  вычисляет прямое косинус-преобразование Фурье; fourierсоs(F(k),k,x)  вычисляет обратное косинус-преобразование Фурье.







Дата добавления: 2015-10-19; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия