Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральные преобразования





В Maple имеется пакет inttrans, в котором содержатся команды различных интегральных преобразований.

 

Преобразование Фурье.

Прямое преобразование Фурье функции f (x) вычисляется по формуле

.

В Maple оно может быть найдено командой fourier(f(x),x,k), где x  переменная, по которой производится преобразование, k  имя переменной, которое следует присвоить параметру преобразования.

Обратное преобразование Фурье задается формулой

и вычисляется командой invfourier(F(k),k,x).

Описанное выше прямое и обратное преобразования Фурье называются комплексными и применяются в тех случаях, когда функция f (x) задана на всей числовой оси. Если функция f (x) задана только при х >0, то рекомендуется использовать синус- и косинус- преобразования Фурье.

Прямое и обратное синус-преобразования Фурье функции f (x) определяются формулами

и .

Поскольку формулы синус-преобразования Фурье симметричны относительно замены x на k, то в Maple эти преобразования вычисляются одной командой, но с различным порядком указания параметров: fouriersin(f(x),x,k) вычисляет прямое синус-преобразование Фурье; fouriersin(F(k),k,x)  вычисляет обратное синус-преобразование Фурье.

Аналогично, прямое и обратное косинус-преобразования Фурье функции f (x) определяются формулами

и .

В Maple эти преобразования вычисляются одной командой, но с различным порядком указания параметров: fourierсоs(f(x),x,k)  вычисляет прямое косинус-преобразование Фурье; fourierсоs(F(k),k,x)  вычисляет обратное косинус-преобразование Фурье.







Дата добавления: 2015-10-19; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия