Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 1.10. Сложное движение точки.





1.10.1. Абсолютное, относительное и переносное движение точки.

1.10.1. Теорема сложения скоростей.

1.10.1. В Теме 1.7. (Основные понятия кинематики) мы уже говорили, что всякое движение тела или точки есть движение относительное, т.е. его можно наблюдать и изучать лишь по отношению к другим физическим телам и связанным с ними системам отсчёта. В предыдущих темах мы рассматривали движение по отношению к так называемой «неподвижной» системе, за которую в технической практике принимают обычно систему отсчета, жестко связанную с Землей.

Движение точки по отношению к системе отсчета, принимаемой за неподвижную, называется абсолютным дви­жением.

В ряде случаев движение точки по отношению к не­подвижной системе отсчета бывает удобно рассматривать как движение сложное, состоящее из двух одновременных движений: движения точки по отношению к некоторой подвижной системе отсчета и движения точки вместе с подвижной системой отсчета по отношению к неподвижной.

Так, например, движение какой-либо точки М колеса автомобиля (рис. 1.10.1.), совершающееся по отношению к Земле по кривой, называемой циклоидой, можно считать состоящим из двух простых движений: движения точки по окружности по отношению к корпусу автомобиля и дви­жения этой точки вместе с поступательно движущимся корпусом автомобиля.

Движение точки по отношению к подвижной системе отсчета называется относительным движением.

Движение подвижной системы отсчета и всех неизмен­но связанных с ней точек по отношению к неподвижной системе отсчета называется переносным движением.

Чтобы определить переносное движение какой-либо точки в данный момент времени, надо мысленно прекра­тить относительное движение данной точки и определить ее движение вместе с подвижной системой отсчета по от­ношению к неподвижной системе отсчета. Аналогичным приемом бывает иногда удобно пользо­ваться и для выяснения относительного движения точки. Чтобы его определить, надо мысленно прекратить пере­носное движение точки.

В приведенном выше примере круговое движение точки М по отношению к движущемуся корпусу автомобиля есть, очевидно, относительное движение. Если эту точку мысленно неизменно связать с корпусом автомобиля, то ее движение вместе с ним будет переносным движением. Движение же точки М (по циклоиде) по отношению к Земле—абсолютное дви­жение.

Приведем для поясне­ния еще один при­мер. Движение человека по палубе движущегося по реке парохода есть дви­жение относительное. Дви­жение точки палубы паро­хода, в которой в дан­ный момент находится че­ловек, относительно бере­га реки—переносное дви­жение, а движение челове­ка относительно берега — абсолютное движение.

Условимся обозначать абсолютную скорость точки принятым ранее символом , а относительную и перенос­ную скорости тем же символом, но с соответствующими подстрочными индексами: отн — для относительного дви­жения () и пер—для переносного движения ().

Абсолютной скоростью данной точки называется ее скорость по отношению к неподвижной системе отсчета.

Относительной скоростью данной точки называ­ется ее скорость по отношению к подвижной системе отсчета.

Переносной скоростью какой-либо точки М называется абсолютная скорость той неизменно связанной с подвижной системой точки, с которой совпа­дает в этот момент данная точка М.

Так. как только при поступательном движении под­вижной системы отсчета скорости всех связанных с ней точек одинаковы, то лишь в этом случае переносная скорость движущейся точки не зависит от ее положения относительно подвижной системы отсчета и под ней в этом случае можно понимать скорость подвижной систе­мы отсчета относительно неподвижной.

 

1.10.2. Теорема сложения скоростей. Абсолютная скорость точки равна гео­метрической сумме ее переносной и относительной ско­ростей:

Так как при геометрическом сложении двух скоростей точки ее ре­зультирующая скорость изображается диагональю параллелограмма, по­строенного на составляющих скоростях как на сторонах, то данную теорему называют часто правилом параллелограмма.

Если модули переносной и относительной скоростей точки и угол между их направлениями из­вестны, то модуль абсолютной скорости находится на основании теоремы косинусов (совершенно так же, как и при сложении двух сил, приложенных к одной точке):

 

Вопросы для самопроверки.

1. Дайте определение абсолютного, относительного и переносного движения точки.

2. Что называется абсолютной, относительной, переносной скоростью точки?

3. Сформулируйте теорему о скорости точки в сложном движении.

 







Дата добавления: 2015-10-19; просмотров: 764. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия