Комплексные числа. Комплексно сопряженные числа. Геометрическая, тригонометрическая и показательная форма комплексных чисел.
Комплексные числа — расширение поля вещественных чисел, обычно обозначается . Любое комплексное число может быть представлено как формальная сумма , где и — вещественные числа, — мнимая единица. Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени с комплексными коэффициентами имеет ровно комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехнике, гидродинамике, картографии, квантовой механике, теории колебаний и многих других. Если комплексное число , то число называется сопряжённым (или комплексно сопряжённым) к (обозначается также ). На комплексной плоскости сопряжённые числа получаются зеркальным отражением друг друга относительно вещественной оси. Модуль сопряжённого числа такой же, как у исходного, а их аргументы отличаются знаком. Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства. · (сопряжённое к сопряжённому есть исходное). · · · · Обобщение: , где — произвольный многочлен с вещественными коэффициентами. · · Значимость сопряжения объясняется тем, что оно является образующей группы Галуа .
|