Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства пустого множества





· Ни одно множество не является элементом пустого множества. Иначе говоря, и, в частности, .

· Пустое множество является подмножеством любого множества. Иначе говоря, и, в частности, .

· Объединение пустого множества с любым множеством равно последнему [указанному множеству]. Иначе говоря, и, в частности, .

· Пересечение пустого множества с любым множеством равно пустому множеству. Иначе говоря, и, в частности, .

· Исключение пустого множества из любого множества равно последнему [указанному множеству]. Иначе говоря, и, в частности, .

· Исключение любого множества из пустого множества равно пустому множеству. Иначе говоря, и, в частности, .

· Симметрическая разность пустого множества с любым множеством равна последнему [указанному множеству]. Иначе говоря, и, в частности,

· Декартово произведение пустого множества на любое множество равно пустому множеству. Иначе говоря, и, в частности, .

· Пустое множество — транзитивно. Иначе говоря, , где .

· Пустое множество — ординал. Иначе говоря, , где .

· Мощность пустого множества равна нулю. Иначе говоря, .

· Мера пустого множества равна нулю. Иначе говоря,

Континуум (от лат. continuum — непрерывное) — мощность (или кардинальное число) множества всех вещественных чисел. Обозначается строчной латинской буквой c во фрактурном начертании: . Множество, имеющее мощность континуум, называется континуальным множеством.

Также термин континуум может обозначать само множество вещественных чисел, или даже любое континуальное множество.







Дата добавления: 2015-12-04; просмотров: 264. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия