Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параграф 5. Непрерывная случайная величина





 

Дифференциальной функцией распределения или плотностью вероятности непрерывной случайной величины называется производная ее функции распределения:

График плотности вероятности называется кривой распределения.

Свойства плотности вероятности непрерывной случайной величины:

Свойство 1. Плотность вероятности неотрицательная функция:

Доказательство.

как производная монотонно неубывающей функции .

Свойство доказано.

Свойство 2. Вероятность попадания непрерывной случайной величины в интервал от до включительно равна определенному интегралу от ее плотности в пределах от до :

Доказательство.

Согласно свойству 3 функции распределения:

Так как есть первообразная для плотности вероятности , то по формуле Ньютона-Лейбница приращение первообразной на отрезке от до включительно есть определенный интеграл .

Свойство доказано.

Свойство 3. Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле:

Доказательство.

Свойство доказано.

Свойство 4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице:

Доказательство.

Свойство доказано.

Математическим ожиданием или средним значением непрерывной случайной величины называется величина несобственного интеграла:

– математическое ожидание непрерывной случайной величины ;

– плотность непрерывной случайной величины ;

– возможное значение дискретной случайной величины .

Дисперсией или разбросом непрерывной случайной величины называется величина несобственного интеграла:

Все свойства математического ожидания и дисперсии дискретной случайной величины, справедливы и для непрерывных случайных величин.

Пример 1.

 







Дата добавления: 2015-12-04; просмотров: 192. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия