Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос численное решение системы нелинейных алгебраических уравнений метод ньютона





Метод Ньютона-Рафсона

Математической основой метода является линеаризация функций F 1, F 2 , Fn (левых частей уравнений, образующих систему) путем разложения в ряд Тейлора в окрестности точки начального приближения к решению и пренебрежением всеми членами ряда кроме линейных относительно приращений переменных.

Рассмотрим метод на примере системы двух уравнений с двумя неизвестными:

Линеаризуем функции F 1, F 2 путем разложения в ряд Тейлора вблизи некоторой точки (начального приближения) и пренебрежения всеми членами ряда кроме линейных относительно приращений переменных.

Вспомним, что для функции одной переменной разложение в ряд Тейлора в окрестности некоторой точки x0 имеет следующий вид:

после пренебрежения всеми членами, кроме линейного:

Для функции нескольких переменных разложение проводится аналогично.

Выберем для поиска решения системы уравнений некоторое начальное приближение

Запишем для функции F 1 2-х переменных линейную часть разложения в ряд Тейлора в окрестности выбранной точки

для второго уравнения, аналогично

Если значения переменных x 1 и x 2 являются решением, то оба уравнения системы должны обратиться в ноль, поэтому полученные разложения приравниваем нулю.

Для краткости записи введем следующие обозначения:

- приращение i -ой переменной

- значение первой частной производной функции F j по переменной xi при значении переменных

– значение j -ой функции при соответствующих значениях переменных, то есть невязка j ‑го уравнения.

Получим систему линейных уравнений 2 x 2 относительно приращения переменных

Или, в матричной форме,

где матрица значений частных производных называется матрицей Якоби (или якобианом). Решение этой системы дает вектор поправок к начальному приближению.

Сложение его с вектором начального приближения дает новые значения переменных.

Итерационная процедура далее продолжается аналогично.

Таким образом, процедура решения выглядит следующим образом:

1. Выбирается начальное приближение, система приводится к нормальному виду, в аналитическом виде находятся частные производные правых частей уравнений системы по всем переменным.

2. Рассчитывается матрица Якоби значений частных производных в точке начального приближения

3. Решается система линейных уравнений относительно приращений переменных.

4. к вектору начального приближения прибавляется вектор приращений

5. проверяется условие сходимости и, если оно не достигнуто, то процедура повторяется с п. 2.

 

Метод легко обобщается на систему уравнений любой размерности.

Для функции F 1 n переменных линейная часть разложения в ряд Тейлора в окрестности точки записывается так

После разложения всех уравнений системы и используя введенные ранее обозначения, после преобразования получим систему линейных уравнений порядка n относительно приращения переменных Δ xi

Или, в матричной форме,

В сокращенном виде можно записать так - (F')(Δ x) = - (F), где матрица значений частных производных – (F')– называется матрицей Якоби или якобианом системы уравнений.

Решение этой системы дает вектор поправок к начальному приближению. Сложение его с вектором начального приближения дает новые, уточненные значения переменных.

Частные производные, необходимые для расчета матрицы Якоби, можно рассчитать аналитически или же, если это невозможно или затруднительно, получать по формулам приближенного дифференцирования, например, как отношение приращения функции к приращению аргумента

,

где эпсилон – достаточно малое число.


Вопрос







Дата добавления: 2015-12-04; просмотров: 284. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия