Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Графическая иллюстрация метода наименьших квадратов (мнк).





На графиках все прекрасно видно. Красная линия – это найденная прямая y = 0.165x+2.184, синяя линия – это , розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y при x=3 или при x=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.


Вопрос

При большом количестве узлов интерполяции сильно возрастает степень интерполяционных многочленов, что делает их неудобными для вычислений. Высокой степени многочлена можно избежать, разбив отрезок интерполяции на несколько частей с построением на каждой части самостоятельного интерполяционного многочлена.
1. Кусочно-линейная интерполяция

Простейшим, часто используемым видом локальной интерполяции, является кусочно-линейная интерполяция. Она состоит в том, что заданные точки () соединяются прямолинейными отрезками, а функция приближается к ломаной с вершинами в данных точках.

Для каждого из интервалов , () в качестве уравнения интерполяционного многочлена используется уравнение прямой, проходящей через две точки , :
(1)
Следовательно, при использовании кусочно-линейной интерполяции сначала необходимо определить интервал, в который попадает значение аргумента , затем подставить значение в формулу (1) для найденного интервала и найти приближенное значение функции . Можно показать, что интерполирование по формуле (1) тождественно интерполированию с помощью интерполяционного многочлена Лагранжа первой степени () для точек , :
(2)

Формулы (1) и (2) эквивалентны.
2. Кусочно-квадратичная интерполяция

В случае кусочно-квадратичной интерполяции в качестве интерполяционной функции на отрезке () принимается квадратичный трехчлен:

, (3)

где .

Для определения неизвестных коэффициентов необходимы три уравнения. Ими служат условия прохождения параболы через три точки , , . Эти условия можно записать в виде:

(4)
Интерполяция для любой точки проводится по трем ближайшим точкам. Решив систему (4) относительно , и подставив найденные значения в уравнение (3), получим интерполяционный многочлен Лагранжа второй степени () для трех соседних точек , , :








Дата добавления: 2015-12-04; просмотров: 219. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия