Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Зейделя для решения СЛАУ





Этот метод является модификацией метода простых итераций и в некоторых случаях приводит к более быстрой сходимости.

Итерации по методу Зейделя отличаются от простых итераций (10.12) тем, что при нахождении i-й компоненты (k+1)-го приближения сразу используются уже найденные компоненты (к +1) -го приближения с меньшими номерами . При рассмотрении развернутой формы системы итерационный процесс записывается в виде

 

В каждое последующее уравнение подставляются значения неизвестных, полученных из предыдущих уравнений.


Теорема (10.3) о достаточном условии сходимости метода Зейделя. Если для системы какая-либо норма матрицы меньше единицы, т.е. , то процесс последовательных приближений (10.15) сходится к единственному решению исходной системы при любом начальном приближении .


Записывая (10.15) в матричной форме, получаем

(10.16)

где являются разложениями матрицы

Преобразуя (10.16) к виду , получаем матричную форму итерационного процесса метода Зейделя:

(10.17)

Тогда достаточное, а также необходимое и достаточное условия сходимости будут соответственно такими (см. теоремы 10.1 и 10.2):
Замечания 10.8

1. Для обеспечения сходимости метода Зейделя требуется преобразовать систему к виду с преобладанием диагональных элементов в матрице а (см. метод простых итераций).

2. Процесс (10.15) называется последовательным итерированием, так как на каждой итерации полученные из предыдущих уравнений значения подставляются в последующие. Как правило, метод Зейделя обеспечивает лучшую сходимость, чем метод простых итераций (за счет накопления информации, полученной при решении предыдущих уравнений). Метод Зейделя может сходиться, если расходится метод простых итераций, и наоборот.

3. При расчетах на ЭВМ удобнее пользоваться формулой (10.16).

4. Преимуществом метода Зейделя, как и метода простых итераций, является его "самоисправляемость".

5. Метод Зейделя имеет преимущества перед методом простых итераций, так как он всегда сходится для нормальных систем линейных алгебраических уравнений, т.е. таких систем, в которых матрица является симметрической и положительно определенной. Систему линейных алгебраических уравнений с невырожденной матрицей всегда можно преобразовать к нормальной, если ее умножить слева на матрицу (матрица — симметрическая). Система является нормальной.

Алгоритм метода Зейделя

1. Преобразовать систему к виду одним из описанных способов.

2. Задать начальное приближение решения произвольно или положить , а также малое положительное число (точность). Положить .

3. Произвести расчеты по формуле (10.15) или (10.16) и найти .

4. Если выполнено условие окончания , процесс завершить и в качестве приближенного решения задачи принять . Иначе положить и перейти к пункту 3.

Пример 10.15. Методом Зейделя с точностью решить систему линейных алгебраических уравнений:

 


Решение. 1. Приведем систему к виду (см. пример 10.14):

Так как , условие сходимости выполняется.

2. Зададим . В поставленной задаче .

Выполним расчеты по формуле (10.15): и результаты занесем в табл. 10.6.

Очевидно, найденное решение является точным.


4. Расчет завершен, поскольку выполнено условие окончания .

Пример 10.16. Методом Зейделя с точностью решить систему линейных алгебраических уравнений:

 


Решение. Так как , в данной системе диагональные элементы преобладают. Выразим из первого уравнения , из второго , из третьего

2. Зададим . В поставленной задаче .


3. Выполним расчеты по формулам (10.15): и результаты занесем в табл. 10.7.

Очевидно, найденное решение является точным.

4. Расчет завершен, поскольку выполнено условие окончания .








Дата добавления: 2015-12-04; просмотров: 473. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия