Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Совместные измерения





Если некоторая физическая величина y зависит от другой величины, то эту зависимость можно установить, измеряя при различных значениях x. В результате измерений получается ряд значений:

x1, x2,..., xi,,..., xn;

y1, y2,..., yi,,..., yn.

По данным такого эксперимента можно построить график зависимости y = ƒ(x). Полученная кривая дает возможность судить о виде функции ƒ(x). Однако постоянные коэффициенты, которые входят в эту функцию, остаются неизвестными. Определить их позволяет метод наименьших квадратов, разработанный Ж.Лежандром ещё в 1806 г.

Экспериментальные точки, как правило, не ложатся точно на кривую (рисунок 6).

y

0 x

Рисунок 6 – Кривая экспериментальных точек.

Метод наименьших квадратов требует, чтобы сумма квадратов отклонений экспериментальных точек от кривой, т.е. [yi – ƒ(xi)]2 была наименьшей.

На практике этот метод наиболее часто (и наиболее просто) используется в случае линейной зависимости (рисунок 7), т.е. когда

y = kx или y = a + bx. (15.1)

Рисунок 7 – Линейная аппроксимация результатов измерения.

Линейная зависимость очень широко распространена в разных областях науки и техники. И даже когда зависимость нелинейная, обычно стараются строить график так, чтобы получить прямую линию. Например: показатель преломления стекла n связан с длиной λ; световой волны соотношением n = a + b/λ2. При этом на графике строят зависимость n от λ-2. Мощность гармонического сигнала пропорциональна квадрату амплитуды сигнала и т.д.

Возможен и другой подход – кусочно-линейная аппроксимация кривой, т.е.замена кривой отрезками прямых (рисунок 8).

y

X

 

Рисунок 8 – Кусочно – линейная аппроксимация кривой.

 

Итак, чаще всего при совместных измерениях приходится иметь дело с линейными зависимостями или всё сводят к линейным зависимостям. На них и остановимся.

Рассмотрим зависимость y = kx (прямая, проходящая через начало координат). Составим величину φ; – сумму квадратов отклонений наших точек от прямой

. (15.2)

Величина φ; всегда положительна и оказывается тем меньше, чем ближе к прямой лежат наши точки. Метод наименьших квадратов утверждает, что для k следует выбирать такое значение, при котором φ;имеет минимум

(15.3)
или
(15.4)

Рассмотрим теперь несколько более трудный случай, когда точки должны удовлетворить формуле y = a + bx (прямая, не проходящая через начало координат).

Задача состоит в том, чтобы по имеющемуся набору значений xi, yi найти наилучшие значения a и b.

Снова составим квадратичную форму φ;, равную сумме квадратов отклонений точек xi, yi от прямой

(15.5)

и найдем значения a и b, при которых φ; имеет минимум из решения системы уравнений:

;(15.6)

.

.Совместное решение этих уравнений даёт

. (15.7)

Среднеквадратические погрешности определения a и b равны:

(15.8)

(15.9)

Следует отметить, что при совместных измерениях часто ограничиваются именно среднеквадратическими погрешностями. Но в отдельных случаях требуются более «жёсткие» вероятностные гарантии нахождения коэффициентов « и « b». Тогда их определяют с учётом доверительной вероятности, используя коэффициенты Стьюдента( t ). При этом результаты исследования записываются в виде: a Δa; b Δb д ля Р=…, где Δa = tSa,

Δb = tSb.

При обработке результатов измерения этим методом удобно все данные сводить в таблицу, в которой предварительно подсчитываются все суммы, входящие в формулы (15.6)–(15.10). Формы этих таблиц приведены в рассматриваемом ниже примере.

Пример. Вычислим температурный коэффициент сопротивления металла по методу наименьших квадратов. Сопротивление зависит от температуры по линейному закону

Rt = R0(1 + α t°) = R0 + R0 α t°.

Свободный член определяет сопротивление R0 при температуре 0° C, а угловой коэффициент – произведение температурного коэффициента α на сопротивление R0.

Результаты измерений и расчетов приведены в таблице (см. таблицу 6).

Таблица 6 – Результаты измерений и расчетов.

n t°, c r, Ом t-¯ t (t-¯ t)2 (t-¯ t)r r - bt - a (r - bt - a)2,10-6
    1.242 -62.8333 3948.028 -78.039 0.007673 58.8722
    1.326 -26.8333 720.0278 -35.581 -0.00353 12.4959
    1.386 -1.83333 3.361111 -2.541 -0.00965 93.1506
    1.417 10.16667 103.3611 14.40617 -0.01039 107.898
    1.512 34.16667 1167.361 51.66 0.021141 446.932
    1.520 47.16667 2224.694 71.69333 -0.00524 27.4556
  8.403 8166.833 21.5985 746.804
∑/n 85.83333 1.4005

По формулам (15.7) определяем

,

R0 = ¯R- α R0¯ t = 1.4005 - 0.002645 · 85.83333 = 1.1735 Ом.

Отсюда:

.

Найдем ошибку в определении α. Так как , то по формуле (15.9) имеем:

.

Пользуясь формулами (15.8), (15.9) имеем

;

= 0.014126 Ом.

Тогда

.

Задавшись надежностью P = 0.95, по таблице(7.1) коэффициентов Стьюдента для n = 6, находим t = 2.571 и определяем абсолютную ошибку

Δα = 2.571 · 0.000132 = 0.000338 град-1.

α = (23 ± 4) · 10-4 град -1 для P = 0.95.

.







Дата добавления: 2015-12-04; просмотров: 223. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия