Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод деления отрезка пополам (дихотомии)





Постановка задачи. Пусть известен отрезок [ A, B ] – отрезок локализации. На отрезке [ A, B ] найти точку минимума функции f(x) и отвечающее ей значение функции.

Метод дихотомии заключается в последовательном сокращении отрезка локализации.

Введём обозначение: [ A, B ] ® [ A (0) ,B (0)] – начальный отрезок.

 
 

1) На отрезке [ A, B ] выберем две симметрично расположенные точки α и β (рис.2.2):

где 0 < d < (B - A)/2

d - параметр метода – его конкретная величина будет определена далее.

2) Вычислим значения f (a (0)), f (b (0))

3) Из утверждения 2 для унимодальных функций имеем:

если f (a (0)) £ f (b (0)), то Î [ A (0), b (0)]; тогда A (1 ) = A (0), B (1) = b (0);

если f (a (0)) > f (b (0)), то Î [ a (0), B (0)]; тогда A (1 ) = a (0), B (1) = B (0);

Получили [ A (1 ) , B (1) ] – новый отрезок локализации.

4) Далее, повторяя пункты 1) – 3), на k+1 -ом шаге на отрезке [ A (k ) ,B (k)] снова выберем две симметрично расположенные точки α;(k) и β;(k):

5) За очередное приближение к точке минимума можно выбрать:

х(k) = a (k) или х(k) = b (k)

6) Обозначим D(n) = B (n)A (n) - длина отрезка [ A (n ) ,B (n)]

Тогда справедливо равенство:

откуда следует: , где D = BA - длина отрезка [ A, B ].

D(n) убывает и при n ® ¥ стремится к 2 d.

Чтобы D(n) стало меньше некоторого заданного e > 0, надо выбрать параметр метода d < e/2.

Тогда из соотношения | x (n)- | < D(n) следует, что значение можно найти с точностью e, если выполнять вычисления, пока не выполнится условие: D(n) £ e.

Тогда * = x (n) – приближение к с точностью e.

Метод дихотомии для поиска абсциссы точки, в которой целевая функция F(x) достигает своего минимума, оформим в виде процедуры DIHOTOM.

Блок-схема алгоритма процедуры DIHOTOM(A,B,Eps,X0) приведена на рис.2.3.

F(x) – заданная целевая функция – должна быть описана отдельно.

Входные параметры: А, B – значения концов отрезка локализации [A, B];

Eps – заданная точность вычислений;

Выходные параметры: X0 - приближение к искомому значению абсциссы точки минимума;

 
 


DIHOTOM (A, B, Eps, X0)

 
 


Здесь параметр метода выбрали δ = ε/3 < ε/2
Alfa = (A + B)/2 – Eps/3

Beta = (A + B)/2 + Eps/3

FA = F(Alfa)

FB = F(Beta)

-
+
FA £ FB

B = Beta A = Alfa

 
 

 


-
|B – A| < Eps

+

X0 = (A + B)/2

end

 

Рисунок 2.3 - Блок-схема алгоритма процедуры DIHOTOM

 







Дата добавления: 2015-12-04; просмотров: 240. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия