Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Характеристические функции.





 

Все характеристические функции являются функциями состояния.

Функция называется характеристической, если её частная производная по некоторому параметру даёт другой параметр, а именно, соответствующий тому, по которому производится дифференцирование.

1. Рассмотрим сопряжение по координатам:

В этом случае, в качестве независимо изменяющихся параметров выступают только координаты, а потенциалы отслеживают их изменение по каким-либо зависимостям.

Как было показано ранее, внутренняя энергия является функцией состояния и полностью определяется всей совокупностью координат состояния системы.

U=U(X1, X2,…, Xn) (17)

Дифференциалы всех функций состояния являются полными дифференциалами, поэтому dU- полный дифференциал. В соответствии с правилами математики нахождение полного дифференциала функции нескольких переменных

Xinv – означает, что все остальные координаты инвариантны, т.е. не являются переменными (замороженными).

(23)

Из первого начала термодинамики в общем виде (3) и формулы (23) следует равенство правых частей.

 

=

Так как данное равенство должно выполняться при любом k, то получаем

(24)

Из сравнения полученного выражения формулы (24) и определения характеристической функции следует вывод о том, что внутренняя энергия является характеристической функцией при сопряжении по координатам.

Введем общее обозначение характеристической функции Y(пси).

Y(Xk)=U (25)

Дифференциалом этой характеристической функции является первое начало термодинамики в общем виде.

В качестве примера рассмотрим термодеформационную систему.

X S v
P T -p

 

 

Y(S,v)=U

(26)

(27)

 

Из первого начала термодинамики получается

 

dU=T dS – p dv (28)

(28)- первое начало термодинамики в обычной форме для термодеформационной системы.

В общем случае (для любой системы) при сопряжении по координатам дифференциальной характеристикой функции определяется по формуле:

 

dU=dY )=

 

2. Рассмотрим сопряжение по потенциалам:

При этом виде сопряжения независимым образом изменяются только потенциалы, а координаты отслуживают их изменение по каким-либо конкретным формулам, так как изменяются зависимым образом. Вывод аналогичен случаю 1, можно сразу записать итоговую формулу:

1) (29)

2) (30)

3) (31)

 

 

Рассмотрим в качестве примера термодеформационную систему:

X S V
P T -p

 

Из (29) =>Y(T,p) = U – TS + pv – эта характеристическая функция в термодинамике имеет обозначение и название

F = U – TS + pv (32)

(32)– свободная энтальпия (удельная свободная энтальпия);

Из (30) => dF = S dT + v dp (33)

По своей сути уравнение (33) это одна из форм первого начала термодинамики.

Из (31) => (34)

(35)

Свободная энтальпия – часть энтальпии (i), которая может быть использована в каких-либо технических целях. Энтальпию раньше называли теплосодержанием.

 

3) Смешанное сопряжение.

В этом случае в качестве независимых параметров выступают не все n потенциалов, а только r потенциалов от общего числа. Такие независимые потенциалы будем обозначать:

Pi, i=1,2,3,…,r., r <n

Независимые координаты обозначим как

j=(r+1),(r+2),…,n

Опуская вывод (аналогичен случаю 1), сразу запишем окончательное выражение.

(36)

 

(37)

(38)

(39)

Рассмотрим термодеформационную систему

X S V
P T -p

 

1) Пусть независимым образом изменяется потенциал – Т и независимая координата – v:

Тогда из (36) =>Y(T,v) = U – TS

Эта характеристическая функция имеет свое обозначение и название.

F=U-TS (40)

Уравнение (40) это свободная энергия

В химической термодинамике F называется изохорно-изотермическим потенциалом.

В соответствие с формулой (37) дифференциал этой функции:

dF = – S dT – p dv (41)

По физической сути это одна из форм первого начала термодинамики.

Из формул (38), (39) следует:

(42)

(43)

Если рассмотреть в формуле (41) изотермический процесс, где T=const, то dFT = – p dv (44)

так как dA = p dv, то в соответствии с формулой (44) в изотермических процессах абсолютная работа, совершаемая системой, производится за счёт убыли свободной энергии ∆FT=-AT или:

AT= -∆FT (45)

Ранее отмечалось, что в изотермических процессах вся подведённая к системе теплота идёт на совершение абсолютной работы.

2) Независимым потенциалом является абсолютной давление (P), а независимой координатой энтропия (S).

В соответствии с формулами (36-39) можно записать

Y(p,S) = U + pv, эта характеристическая функция называется энтальпией i.

i = U + pv [ (46)

 

По физическому смыслу произведение p на v это потенциальная энергия одного килограмма газа при давлении p и удельного объема v.

S- Площадь поршня

M- Масса груза

P- Давление в системе (газа под поршнем)

W-Объем системы (газа под поршнем)

H- Высота поднятия поршня


Из физики известно, что потенциальная энергия груза определяется как Eпот=MgH, так как система находится в равновесии то Mg=pS, тогда

Eпот = pSH = pW.

Если отнести Eпот к 1 кг системы, то

Так как внутренняя энергия идеального газа зависит только от температуры и не учитывает давление газа, то энтальпия полнее учитывает энергетические возможности системы с точки зрения совершения работы.

Di=VdP+TdS (47)

Как известно, TdS=dQ, тогда уравнение примет вид:di=VdP+dQ

Рассмотрим частный случай, где P=const (изобарный)

Dip=dQp (48)

После интегрирования получим

∆ip=i2-i1=Qp или Qp=i2-i1 (49)

Из формулы (49) следует, что в изобарных процессах теплота процесса определяется как разность энтальпии, конечного и начального состояния.

(50)

(51)

Рассмотрим формулу (47) di=VdP+TdS, тогда di=VdP+dQ или

dQ=di-VdP (52)

Уравнение (52) это первое начало термодинамики в энтальпийной форме.

Введем обозначение Aрасп. Располагаемая работа- это работа, которая может быть передана другой системе.

(53)

Рассмотрим произвольный процесс расширения системы 1-2

P

 

P1

 


P2

 


V1 V 2 V

 

С учетом (53) уравнение (52) запишется как

dQ=di+dAрасп (54)

Формулировка первого начала термодинамики в энтальпийной форме из (54):

Подведенная к системе теплота идее на изменение ее энтальпии и не совершает располагаемой работы.

 

 

Мнемонический приём для термодеформационной системы:

 

, и т.д.

 

 







Дата добавления: 2015-12-04; просмотров: 120. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия