Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методическая разработка





 

Исследовать функцию на непрерывность. Установить характер разрыва. Построить график функции

 

.

так как

 

Функция не определена в точке . Эта функция может быть записана в виде

 

Каждое из аналитических выражений непрерывно, следовательно, функция имеет разрыв только в точке , где она не определена. Слева от этой точки

функция задана формулой . Следовательно, =

. Справа от точки функция задана формулой , поэтому . Односторонние пределы в точке конечны, но не равны между собой. Предел функции в точке не существует. Функция имеет разрыв в этой точке, который является неустранимым разрывом I рода (скачком).

 

Контрольные варианты задачи 26

 

Исследовать функцию на непрерывность. В точках разрыва установить характер разрыва. Схематично построить график функции:

 

. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
.

 

Методическая разработка

для студентов лечебного, педиатрического, стоматологического

и медико-профилактического факультетов

к лабораторной работе

«Основные понятия математического анализа»

 

 

1. Научно-методическое обоснование темы:

Понятия производной и дифференциала являются одними из основных понятий математического анализа. Вычисление производных необходимо при решении многих задач в физике и математике (нахождение скорости, ускорения, давления и т. д.). Важность понятия производной, в частности, определяется тем, что производная функции характеризует скорость изменения этой функции при изменении ее аргумента.

Применение дифференциала позволяет осуществить приближенные вычисления, а также проводить оценку погрешностей.

Способы нахождения производных и дифференциалов функций и их применение составляют основную задачу дифференциального исчисления. Необходимость понятия производной возникает в связи с постановкой задачи о вычислении скорости движения и нахождении угла касательной к кривой. Возможна и обратная задача: по скорости определить пройденный путь, а по тангенсу угла наклона касательной найти соответствующую функцию. Такая обратная задача приводит к понятию неопределенного интеграла.

Понятие определенного интеграла используют в ряде практических задач, в частности в задачах по вычислению площадей плоских фигур, расчету работы, производимой переменной силой, нахождению среднего значения функции.

При математическом описании различных физических, химических, биологических процессов и явлений часто используют уравнения, содержащие не только изучаемые величины, но и их производные различных порядков от этих величин. Например, в соответствии с простейшей версией закона размножения бактерий, скорость размножения пропорциональна количеству бактерий в данный момент времени. Если это количество обозначить через N(t), то в соответствии с физическим смыслом производной скорость размножения бактерий представляет собой производную N(t), и на основании упомянутого закона можно записать соотношение N'(t)=к∙N, где к>0 - коэффициент пропорциональности. Полученное уравнение не является алгебраическим, так как содержит не только неизвестную функцию N(t), но и ее производную первого порядка.

 

2. Краткая теория:







Дата добавления: 2015-04-16; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия