Методическая разработка
Исследовать функцию на непрерывность. Установить характер разрыва. Построить график функции
. так как
Функция не определена в точке . Эта функция может быть записана в виде
Каждое из аналитических выражений непрерывно, следовательно, функция имеет разрыв только в точке , где она не определена. Слева от этой точки функция задана формулой . Следовательно, = . Справа от точки функция задана формулой , поэтому . Односторонние пределы в точке конечны, но не равны между собой. Предел функции в точке не существует. Функция имеет разрыв в этой точке, который является неустранимым разрывом I рода (скачком).
Контрольные варианты задачи 26
Исследовать функцию на непрерывность. В точках разрыва установить характер разрыва. Схематично построить график функции:
Методическая разработка для студентов лечебного, педиатрического, стоматологического и медико-профилактического факультетов к лабораторной работе «Основные понятия математического анализа»
1. Научно-методическое обоснование темы: Понятия производной и дифференциала являются одними из основных понятий математического анализа. Вычисление производных необходимо при решении многих задач в физике и математике (нахождение скорости, ускорения, давления и т. д.). Важность понятия производной, в частности, определяется тем, что производная функции характеризует скорость изменения этой функции при изменении ее аргумента. Применение дифференциала позволяет осуществить приближенные вычисления, а также проводить оценку погрешностей. Способы нахождения производных и дифференциалов функций и их применение составляют основную задачу дифференциального исчисления. Необходимость понятия производной возникает в связи с постановкой задачи о вычислении скорости движения и нахождении угла касательной к кривой. Возможна и обратная задача: по скорости определить пройденный путь, а по тангенсу угла наклона касательной найти соответствующую функцию. Такая обратная задача приводит к понятию неопределенного интеграла. Понятие определенного интеграла используют в ряде практических задач, в частности в задачах по вычислению площадей плоских фигур, расчету работы, производимой переменной силой, нахождению среднего значения функции. При математическом описании различных физических, химических, биологических процессов и явлений часто используют уравнения, содержащие не только изучаемые величины, но и их производные различных порядков от этих величин. Например, в соответствии с простейшей версией закона размножения бактерий, скорость размножения пропорциональна количеству бактерий в данный момент времени. Если это количество обозначить через N(t), то в соответствии с физическим смыслом производной скорость размножения бактерий представляет собой производную N(t), и на основании упомянутого закона можно записать соотношение N'(t)=к∙N, где к>0 - коэффициент пропорциональности. Полученное уравнение не является алгебраическим, так как содержит не только неизвестную функцию N(t), но и ее производную первого порядка.
2. Краткая теория:
|