Методическая разработка
Исследовать функцию на непрерывность. Установить характер разрыва. Построить график функции
так как
Функция
Каждое из аналитических выражений непрерывно, следовательно, функция функция задана формулой
Контрольные варианты задачи 26
Исследовать функцию на непрерывность. В точках разрыва установить характер разрыва. Схематично построить график функции:
Методическая разработка для студентов лечебного, педиатрического, стоматологического и медико-профилактического факультетов к лабораторной работе «Основные понятия математического анализа»
1. Научно-методическое обоснование темы: Понятия производной и дифференциала являются одними из основных понятий математического анализа. Вычисление производных необходимо при решении многих задач в физике и математике (нахождение скорости, ускорения, давления и т. д.). Важность понятия производной, в частности, определяется тем, что производная функции характеризует скорость изменения этой функции при изменении ее аргумента. Применение дифференциала позволяет осуществить приближенные вычисления, а также проводить оценку погрешностей. Способы нахождения производных и дифференциалов функций и их применение составляют основную задачу дифференциального исчисления. Необходимость понятия производной возникает в связи с постановкой задачи о вычислении скорости движения и нахождении угла касательной к кривой. Возможна и обратная задача: по скорости определить пройденный путь, а по тангенсу угла наклона касательной найти соответствующую функцию. Такая обратная задача приводит к понятию неопределенного интеграла. Понятие определенного интеграла используют в ряде практических задач, в частности в задачах по вычислению площадей плоских фигур, расчету работы, производимой переменной силой, нахождению среднего значения функции. При математическом описании различных физических, химических, биологических процессов и явлений часто используют уравнения, содержащие не только изучаемые величины, но и их производные различных порядков от этих величин. Например, в соответствии с простейшей версией закона размножения бактерий, скорость размножения пропорциональна количеству бактерий в данный момент времени. Если это количество обозначить через N(t), то в соответствии с физическим смыслом производной скорость размножения бактерий представляет собой производную N(t), и на основании упомянутого закона можно записать соотношение N'(t)=к∙N, где к>0 - коэффициент пропорциональности. Полученное уравнение не является алгебраическим, так как содержит не только неизвестную функцию N(t), но и ее производную первого порядка.
2. Краткая теория:
|