Метод замены переменной (метод подстановки)
Этот метод основан на замене переменной интегрирования в определенном интеграле с целью свести его вычисление к вычислению такого определенного интеграла, который может быть вычислен методом разложения. Пример 11. Вычислить интеграл .
Решение. Введем новую переменную ; Тогда , откуда . При замене переменной интегрирования в определенном интеграле необходимо одновременно заменить пределы интегрирования на соответствующие. Имеем: при , при . Отсюда следует, что новым нижним пределом интегрирования будет значение 2, а новым верхним – значение 6. Таким образом
.
Замечание. Если при замене переменной в неопределенном интеграле мы от новой переменной возвращались к первоначальной переменной , то при замене переменной в определенном интеграле в этом нет необходимости.
|