Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод интегрирования по частям





Пусть u(x) и υ(x)- непрерывно дифференцируемые функции на некотором промежутке. Тогда дифференциал их произведения равен

 

d(u υ)=udυ+υdu, (16)

 

Проинтегрируем (16) по x. Имеем

 

uυ = υ+υdu

откуда

 

υ=uυ- υdu, (17)

 

Равенство (17) называется формулой интегрирования по частям. Она позволяет нахождение одного интеграла свести к нахождению более простого интеграла.

Пример 7. Найти . Положим u=arctgx. Тогда du= , υ= и по формуле интегрирования по частям получим:

 

Пример 8. Найти ; Положим u=lnx, dυ=xdx.

Тогда du= υ= и по формуле интегрирования по частям будем иметь

.

 

 

Рассмотрим задачи, приводящие к понятию определенного интеграла.

 

 

Задача о нахождении площади криволинейной трапеции

Пусть дана неотрицательная функция y=f (x), график которой изображен на рис.3.

 

Рис.3

 

Выберем на оси OX точки a и b и восставим из них перпендикуляры до пересечения с кривой. Фигура, ограниченная кривой, перпендикулярами и осью OX, называется криволинейной трапецией. Вычислим площадь этой трапеции. Для этого разобьем отрезок на n частичных отрезков точками

 

.

 

Внутри каждого отрезка длины выберем произвольную точку k . Составим произведения ,…

Каждое такое произведение равно площади прямоугольника с основанием и высотой, равной значению функции в произвольной точке соответствующего отрезка. Сумма таких произведений

 

(18)

 

называется интегральной суммой для функции f(x) на отрезке и равна площади всех прямоугольников.

Если каждый из отрезков достаточно мал, т.е. и т.д., то площадь заштрихованной области (рис.3) стремится к площади криволинейной трапеции, равной

, (19)

 

Таким образом, задача о вычислении площади криволинейной трапеции сводится к определению предела интегральной суммы (18).

 







Дата добавления: 2015-04-16; просмотров: 457. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия