Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи, приводящие к понятию производной





1. Задача о нахождении скорости v материальной точки. Пусть некоторая материальная точка совершает прямолинейное движение. В момент времени t1 точка находится в положении М1. В момент времени t2 в положении М2. Обозначим промежуток М1, М2 через ΔS; t2 – t1 =Δt. Величина называется средней скоростью движения. Чтобы найти мгновенную скорость точки в положении М1 необходимо Δt устремить к нулю. Математически это значит, что

 

, (1)

 

Таким образом, для нахождения мгновенной скорости материальной точки необходимо вычислить предел отношения приращения функции ΔS к приращению аргумента Δt при условии, что Δt→0.

 

2. Задача о нахождении угла наклона касательной к графику функции.

 

Рис.1

 

Рассмотрим график некоторой функции у=f(х). Чему равен угол наклона касательной, проведенной в точке М1? В точке М1 проведем касательную к графику функции. На графике выберем произвольную точку М2 и проведем секущую. Она наклонена к оси ОХ под углом α1. Рассмотрим ΔМ1М2А:

 

, (2)

 

Если точку М1 фиксировать, а точку М2 приближать к М1, то секущая М1М2 будет переходить в касательную к графику функции в точке М1 и можно записать:

 

, (3)

 

Таким образом, необходимо вычислить предел отношения приращения функции к приращению аргумента, если приращение аргумента стремится к нулю.

Предел отношения приращения Δy функции у=f(х) к приращению аргумента Δx в заданной точке х0 при стремлении Δx к нулю, называется производной функции в заданной точке.

Обозначения производной: у', f '(х), . По определению

 

, (4)

 

где Δx=х21 – приращение аргумента (разность между двумя последующими достаточно близкими значениями аргумента), Δy=у21 – приращение функции (разность между значениями функции, соответствующими этим значениям аргумента).

Нахождение производной данной функции называется ее дифференцированием. Дифференцирование основных элементарных функций производится по готовым формулам (см. табл.), а также с помощью правил:

 

1. Производная алгебраической суммы функций равна сумме производных этих функций:

 

(u+υ)'= u' +υ'

 

2. Производная произведения двух функций равна сумме произведений второй функции на производную первой и первой функции на производную второй:

 

(u∙ υ)'= u' υ + u υ'

 

 

3. Производная частного двух функций равна дроби, числитель которой есть разность между произведениями знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель- квадрат знаменателя:

 

Физический смысл производной. Из сравнения (4) и (1) следует, что мгновенная скорость прямолинейного движения материальной точки равна производной зависимости ее координаты от времени.

Общий смысл производной функции заключается в том, что она характеризует скорость (быстроту) изменения функции при данном изменении аргумента. Быстрота протекания физических, химических и других процессов, например скорость охлаждения тела, скорость химической реакции, скорость размножения бактерий и т.п., также выражается при помощи производной.

Геометрический смысл производной. Величину тангенса угла наклона касательной, проведенной к графику функции, в математике называют угловым коэффициентом касательной.

Угловой коэффициент касательной, проведенной к графику дифференцируемой функции в некоторой точке, численно равен производной функции в данной точке.

Это утверждение называют геометрическим смыслом производной.







Дата добавления: 2015-04-16; просмотров: 1695. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия