Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полные кубические уравнения





 

Полное кубическое (кубичное) уравнение вида

легко приводится к трёхчленному кубическому уравнению подстановкой .

 

Покажем это

 

 

,

,

. Положим , получим трёхчленное кубическое уравнение .


Пример 1. Решите уравнение .

 

Решение

 

Положим , получим ,

.

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна 9, а произведение 8.

Получим уравнение: , ;

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0 -6 -9 3
1

 

Уравнение примет вид: . Уравнение не имеет действительных корней.

Получим один корень: . Найдем решение данного кубического уравнения: . Оно также имеет один действительный корень.

 

Ответ: .

 

Пример 2. Решите уравнение .

 

Решение

 

Положим , получим ,

,

.

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -28, а произведение 27.

Получим уравнение: , ;

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0 -9 28 -4
1

 

Уравнение примет вид: . Уравнение не имеет действительных корней.

Получим один корень: . Найдем решение данного кубического уравнения: . Оно также имеет один действительный корень.

 

Ответ: .

 

Пример 3. Решите уравнение .

 

Решение

 

Положим , получим ,

.

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна 19 а произведение -216.

Получим уравнение: , ;

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0 18 -19 1
1

 

Уравнение примет вид: . Уравнение не имеет действительных корней.

Получим один корень: . Найдем решение данного кубического уравнения: . Оно также имеет один действительный корень.

 

Ответ: .

 

Пример 4. Решите уравнение .

 

Решение

 

Положим , получим ,

.

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -6 а произведение 8.

Получим уравнение: , ;

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:


 

1 0 -6 6
1

 

Уравнение примет вид: .

Уравнение не имеет действительных корней, поскольку его дискриминант отрицателен.

Получим один корень: . Найдем решение данного кубического уравнения: . Оно также имеет один действительный корень.

 

Ответ: .

 

Пример 5. Решите уравнение .

 

Решение

 

Положим , получим ,

.

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем: .

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -4 а произведение 8.

Получим уравнение: . Полученное квадратное уравнение не имеет корней на множестве действительных чисел, значит такой метод к решению данного уравнения не применим.

Хотя, совершенно очевидно, что x = 1 является корнем данного уравнения, ибо сумма его коэффициентов равна нулю.

Разделим многочлен на x - 1 по схеме Горнера:

1 3 -3 -1 1
1

Получаем следующее уравнение: .

Квадратное уравнение имеет два корня:

, .

 

Ответ: , , .

 


Пример 6. Решите уравнение .

 

Решение

 

Положим , получим ,

.

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем: .

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна 98 а произведение -3375.

Получим уравнение . Оно имеет корни .

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0 45 -98 2
1

 

Уравнение примет вид: . Уравнение не имеет действительных корней.

Получим один корень: . Найдем решение данного кубического уравнения: . Оно также имеет один действительный корень.

 

Ответ: .

 

Пример 7. Решите уравнение .

 

Решение

Преобразуем уравнение, разделив обе его части на коэффициент при , т. е. на 27, получим уравнение: .

Положим , получим ,

,

, .

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем: .

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна а произведение .

Получим уравнение или

Оно имеет корни .

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0
1

Уравнение примет вид: .

Уравнение имеет два равных действительных корня .

Получим корни: , . Найдем решение данного кубического уравнения: , , .

 

Ответ: , .

 







Дата добавления: 2015-04-16; просмотров: 561. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия