Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зависимости между корнями уравнения и его коэффициентами





 

Пусть дано приведенное биквадратное уравнение .

Допустим, что это уравнение имеет действительные корни и пусть и - корни этого уравнения, тогда и также будут являться корнями этого уравнения, в силу четности функции .

Получим: ,

.

Отсюда находим: .

 

Пример 5. Составить биквадратное уравнение, имеющее в числе своих корней и .

 

Решение

 

Из вышеприведенной теореме следует, что для уравнения , имеем . Подставляя значения вместо корней уравнения, находим: .

Получим уравнение: .

 

Ответ: .

 

Пример 6. Найти q в уравнении , зная, что ( и - корни уравнения).

 

Решение

 

Если и - корни уравнения, тогда , .

Получаем систему уравнений:

 

Ответ: .


Пример 7. Определить, при каком значении корни уравнения

составляют арифметическую прогрессию.

 

Решение

 

Во-первых, выясним, при каких значениях уравнение вообще будет иметь корни. Очевидно, для этого необходимо и достаточно, чтобы выражение

(следуя аналогии с квадратным уравнением, назовем его дискриминантом) было больше нуля или равнялось нулю.

.

Решать неравенство не будем, но, когда будут найдены значения , проверим, будет ли выполняться это неравенство.

Во-вторых. Пусть и - корни уравнения, причем , тогда и , также будут являться корнями уравнения.

Расположим эти корни в порядке возрастания, получим следующую последовательность: .

Поскольку эти корни должны образовывать арифметическую прогрессию, получим: .

С другой стороны, известно, что и .

Получим систему уравнений:

,

- эти корни входят в область допустимых значений.

 

Ответ: .

 







Дата добавления: 2015-04-16; просмотров: 548. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия