Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Трехчленные кубические уравнения





 

Рассмотрим один из методов решения неполных кубических уравнений на частных примерах.

 

Пример 1. Решите уравнение .

 

Решение

 

Положим и подставим в уравнение, получим:

или

.

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -16, а произведение 64.

Получим уравнение: , ;

.

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0 -12 16 -4
1

 

Уравнение примет вид: .

Получим еще один корень: .

 

Ответ: .

 

Пример 2. Решите уравнение .

 

Решение

 

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -9, а произведение 8.

Получим уравнение: , ;

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0 -6 9 -3
1

 

Уравнение примет вид: . Уравнение не имеет действительных корней.

Получим один корень: .

 

Ответ: .

 

Пример 3. Решите уравнение .

 

Решение

 

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -63, а произведение -64.

Получим уравнение: , ;

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

 

1 0 12 63 -3
1

 

Уравнение примет вид: . Уравнение не имеет действительных корней.

Получим один корень: .

 

Ответ: .

 

Пример 4. Решите уравнение .

 

Решение

 

Положим и подставим в уравнение, получим:

или .

 

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -4, а произведение 8.

Получим уравнение: , ;

Квадратное уравнение корней не имеет.

Однако, первоначальное кубическое уравнение имеет действительные корни. В самом деле, среди делителей свободного члена: нетрудно найти корень: . В самом деле: .

Разделим, по схеме Горнера, трёхчлен на x - 2, получим:

 

1 0 -6 4 2
1

 

 

Уравнение примет вид: . Решим квадратное уравнение:

 

.

 

Ответ: .

 


Пример 5. Решите уравнение .

 

Решение

 

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -2, а произведение -8.

Получим уравнение: , ;

Тогда .

После того, как найден один из действительных корней, следует проверить, а не существуют ли другие действительные корни.

Для этого, применяя теорему Безу, устанавливаем, что кубический трёхчлен будет нацело делится на двучлен . Выполним деление по схеме Горнера:

1 0 6 2
1

 

Уравнение примет вид: .

Уравнение не имеет действительных корней, т. к. его дискриминант отрицателен:

.

Уравнение имеет один действительный корень: .

 

Ответ: .

 

Не всегда этот метод может дать положительный результат!

 

Пример 6. Решите уравнение .

 

Решение

 

Положим и подставим в уравнение, получим:

или .

Поскольку и выбраны произвольно, потребуем, чтобы , и поэтому получаем:

.

С другой стороны, из равенства находим:

.

Рассмотрим и , как корни квадратного уравнения, сумма корней которого равна -30, а произведение .

Получим уравнение: ,

, а значит квадратное уравнение не имеет решений.

Однако, исходное уравнение имеет три действительных корня 2, 3 и -5.

Методика решения такого типа уравнений рассматривается на множестве комплексных чисел и будет приведено ниже.

 







Дата добавления: 2015-04-16; просмотров: 940. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия