Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения четвертой степени





 

Решение уравнения четвертой степени

 

(6)

 

с произвольными комплексными коэффициентами сводится к реше­нию некоторого вспомогательного кубичного уравнения. Осуществляется это методом, принадлежащим Феррари.

Предварительно уравнение (6) подстановкой приво­дится к виду

(7)

Затем левая часть этого уравнения следующим образом тождественно преобразуется при помощи вспомогательного параметра :

или

. (8)

Подберем теперь так, чтобы многочлен, стоящий в квадратных скобках, стал полным квадратом. Для этого он должен иметь один двукратный корень, т. е. должно иметь место равенство

. (9)

Равенство (9) является кубичным уравнением относительно неизвест­ного с комплексными коэффициентами. Это уравнение имеет, как мы знаем, три комплексных корня. Пусть будет один из них; он выражается ввиду формулы Кардано при помощи корней через коэффициенты уравнения (9), т. е. через коэффициенты уравнения (7),

При этом выборе значения для многочлен, стоящий в квадрат­ных скобках в (8), имеет двукратный корень , и поэтому урав­нение (8) принимает вид

,

т. е. оно распадается на два квадратных уравнения:

(10)

Так как от уравнения (7) к уравнениям (10) мы пришли при помощи тождественных преобразований, то корни уравнений (10) будут служить корнями и для уравнения (7). Легко видеть вместе с тем, что корни уравнения (7) выражаются через коэффициенты при помощи корни. Мы не будем выписывать соответствующих формул ввиду их громоздкости и практической бесполезности, не станем также исследовать отдельно случай, когда уравнение (7) имеет действительные коэффициенты.

 







Дата добавления: 2015-04-16; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия