Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вопрос 14





Способы задания функции, обратимые и необратимые функции. Обратная функция. График обратной функции.

Задать функцию означает установить правило (закон), с помощью которого по данным значениям независимой переменной следует находить соответствующие им значения функции. Существует множество способов задания функции. К наиболее часто встречаемым относятся аналитический, когда функция задаётся формулой, графический, когда функция задаётся графиком, словесный или описательный, когда функция задаётся свойством описываемым словами, перечислением (как правило, для конечных функций, содержащих небольшое количество членов), рекуррентный, как правило, для функций определённых на множестве натуральных чисел (последовательностей), при рекуррентном способе, как правило, задаётся значение функции для 1 и закон, по которому зная значение функции для n, можно найти значение для (n+ 1).

Пусть функция определена на множестве . Тогда каждому значению , соответствует единственное значение . Если каждое своё значение функция принимает только один раз, то такую функцию называют обратимой.

Зададим соответствие g между элементами множеств и обратимой функции f, при котором каждому элементу будет соответствовать элемент такой, что . Данное соответствие будет являться функцией, а заданная таким образом функция g будет называться функцией, обратной функции f (обозначается f-1).

Свойства обратных функций.

1. Если g - функция, обратная функции f, то и f - функция, обратная функции g.

2. = и = . Т.е у прямой и обратной функции области определения и значений «меняются местами».

3. Графики прямой и обратной функции симметричны относительно прямой - биссектрисы I и III координатных углов.
Действительно, если точка А принадлежит графику прямой функции, то точка А1 принадлежит графику обратной функции. Уравнение прямой АА1 имеет вид , значит она перпендикулярна прямой . Точка пересечения прямых и АА1 имеет координаты , т.е. равноудалена от точек А и А1. Примеры графиков прямой и обратной функций:

4. Если обратимая функция нечётная, то и обратная ей функция тоже нечётная.

Из нечётности прямой функции f следует, что если точка с координатами принадлежит графику функции f, то и точка принадлежит графику функции f, a это означает, что точки с координатами и принадлежит графику функции g, т.е. обратная функция тоже нечётная.

Пусть функция определенная на множестве на каком-нибудь множестве каждое значение принимает только один раз, то он называется обратимой на множестве .

Пример: каждая из функций и необратима на множестве R, но обратима на каждом из интервалов и .

Для нахождения функции, обратной данной обратимой функции, поступают следующим образом:

1) выражают переменную x через переменную y,

2) в полученном выражении меняют x на y, а y на x.







Дата добавления: 2015-04-19; просмотров: 533. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия