Двойной интеграл в полярных координатах
Одним из частных случаев замены переменных является переход из декартовой в полярную систему координат (рисунок 1).
Якобиан такого преобразования имеет вид Следовательно, дифференциальный элемент в полярных координатах будет равен Пусть область интегрирования R в полярных координатах определяется следующим образом (рисунок 2): Тогда двойной интеграл в полярных координатах описывается формулой Будем называть полярным прямоугольником область интегрирования, показанную на рисунке 3 и удовлетворяющую условиям В этом случае формула замены переменных в двойном интеграле имеет вид Будьте внимательны, чтобы не пропустить сомножитель (якобиан) r в правой части этой формулы!
|