Пусть на G определена функция . Точка называется точкой условного экстремума функции относительно уравнений связи, если она является точкой обычного экстремума на множестве E (рассматриваются окрестность ).
Метод множителей Лагранжа для решения задачи условного экстремума
Теорема. Пусть - точка условного экстремума функции при выполнении уравнений связи. Тогда в этой точке градиенты являются линейно зависимыми, т.е. но .
Следствие. Если - точка условного экстремума относительно уравнений связи, то такие, что в точке или в координатном виде .
Достаточное условие условного экстремума
Пусть является стационарной точкой функции Лагранжа при . Если - отрицательно (положительно) определена квадратичная форма переменных D X 1,.., D X N с условием , то есть точкой max (min для положительно определение) условного экстремума. Если она при этих условиях не является знаков и значению, тогда экстремума нет.
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при которых тело находится под действием заданной системы сил...
Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...
Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех составляющих внешней среды, с которыми предприятие находится в непосредственном взаимодействии...
Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...
Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...