Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывность функции двух переменных





Функция (или f(M)) называется непрерывной в точке , если она:

а) определена в этой точке и некоторой её окрестности;

б) имеет предел

в) этот предел равен значению функции z в точке М0, т. е.

или

Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области. Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называются точками разрыва этой функции. Точки разрыва могут образовывать целые линии разрыва. Так, функция имеет линию разрыва

Можно дать другое, равносильное приведенному выше, определение непрерывности функции в точке. Обозначим . Величины называются приращениями аргументов х и у, а полным приращением функции в точке .

Функция называется непрерывной в точке если выполняется равенство т. е. полное приращение функции в этой очке стремится к нулю, когда приращения её аргументов х и у стремятся к нулю.

Пользуясь определением непрерывности и теоремами о пределах, можно доказать, что арифметические операции над непрерывными функциями и построение сложной функции из непрерывных функций приводит к непрерывным функциям – подобные теоремы имели место для функций одной переменной.

Свойства функций, непрерывных в ограниченной замкнутой области

Областью называется множество точек плоскости, обладающих свойствами открытости и связности.

Свойство открытости: каждая точка принадлежит ей вместе с некоторой окрестностью этой точки.

Свойство связности: любые две точки области можно соединить непрерывной линией, целиком лежащей в этой области.

Точка N0 называется граничной точкой области D, если она не принадлежит D, но в любой окрестности её лежат точки этой области. Совокупность граничных точек области D называется границей D. Область D с присоединенной к ней границей называется замкнутой областью, обозначается . Область называется ограниченной, если все её точки принадлежат некоторому кругу радиуса R. В противном случае область называется неограниченной. Примером неограниченной области может служить множество точек первого координатного угла, а примером ограниченной – -окрестность точки .

Теорема

Если функция непрерывна в ограниченной замкнутой области, то она в этой области: а) ограничена, т. е. существует такое число R > 0, что для всех точек N в этой области выполняется неравенство б) имеет точки, в которых принимает наименьшее m и наибольшее M значения; в) принимает хотя бы в одной точке области любое численное значение, заключенной между m и M (дается без доказательства).

 







Дата добавления: 2015-06-12; просмотров: 636. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия