Частные производные высших порядков
Частные производные первого порядка мы можем рассматривать, в предположении их существования, как функции, заданные в некоторой области пространства переменных . От каждой из этих функций , в свою очередь, можно найти частные производные: производных от : производных от : и так далее до ; всего получается производных где . Производная обозначается также или . Эти производные называются частными производными второго порядка от функции . Если , то есть если второе дифференцирование ведётся по той же переменной , что и первое, то частная производная второго порядка называется чистой частной производной второго порядка по переменной и более кратко обозначается . Если же , то частная производная второго порядка называется смешанной частной производной второго порядка. Итак, для функции можно отыскать чистых частных производных второго порядка и смешанных. Ниже мы увидим, что при некоторых дополнительных предположениях смешанные частные производные и , отличающиеся порядком дифференцирований, совпадают, так что различных смешанных производных второго порядка оказывается не , а вдвое меньше. 9.Экстремумы функций двух переменных. Говорят, что функция имеет максимум в точке , т.е. при , если для всех точек , достаточно близких к точке и отличных от неё.
Если функция достигает экстремума при , то каждая частная производная первого порядка от или обращается в нуль при этих значениях аргументов, или не существует.
Пусть в некоторой области, содержащей точку функция имеет непрерывные частные производные до третьего порядка включительно. Пусть, кроме того, точка является критической точкой функции , т.е.
|