Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциал функции нескольких переменных





Пусть функция z = f(x,y), имеет в точке М000) частные производные f /x00) и f /у00).

Полным приращением функции z = f(x,y) в точке М000) называется разность

Пусть приращение функции z =f(x,y) можно представить в виде

где, то функция называется дифференцируемой в точке M 000).

Полным дифференциалом функции z=f(x,y) называется главная часть полного приращения , линейная относительно приращений её аргументов . Полный дифференциал функции (если он существует) равен сумме всех ее частных дифференциалов и вычисляется по формуле:

При достаточно малых (по абсолютному значению) приращениях аргументов, полное приращение функции можно с как угодно малой относительной погрешностью заменить ее полным дифференциалом. Дифференциалы dх и dy независимых аргументов функции х и у совпадают с их приращениями соответственно . Таким образом,

Раньше говорилось о том, что из существования частных производных в точке не следует непрерывности функции в этой точке. Однако можно записать

а это означает непрерывность функции в точке (х00). Следовательно, дифференцируемая в точке функция обязательно непрерывна в этой точке.

Из сказанного следует, что существование обеих частных производных функции в точке не означает, что функция дифферен­цируема в этой точке. В курсе математического анализа доказывается теорема, о функции, дифференцируемой в точке, если обе частные производные этой функции непрерывны в этой точке.

Так как дифференциал df даёт приближенное значение приращения функции при малых значениях приращений аргументов.

 

 

6.Дифференцирование сложной функции.

Пусть задана функция . Пусть далее аргумент этой функции является не независимой переменной ,а значением другой функции . Тогда функция называется сложной функцией.

Теорема. Если функция имеет производную в точке , а функция имеет производную в соответствующей точке , то функция имеет производную в точке и имеет место следующая формула: .

Таблица производных простейших элементарных функций

1. (u a(x))' = a u a-1(x) u '(x), в частности,

(1 /u (x)) ' = -u' (x) /u 2(x), () ' = u' (x) / 2 ;

2. (loga u (x))' = (u'(x)logae)/u(x) при 0<a№1, u(x)>0, в частности, (ln u (x))' = u'(x)/ u (x);

3. (a u (x))' = a u (x)ln a u '(x) при 0<a№1, в частности, (e u (x))' = u'(x)e u (x);

4. (sin u (x))' = cos u (x) u '(x);

5. (cos u (x))' = -sin u (x) u '(x);

6. (tg u (x))' = u '(x)/cos2 u (x) x№ p/2+p n, n=0,+-1,...;

7. (ctg u (x))' = - u '(x)/sin2 u (x) x№ p n, n=0,+-1,...;

8. (arcsin u (x))' = u '(x)/ , -1< u (x)<1;

9. (arccos u (x))' = - u '(x)/ , -1< u (x)<1;

10. (arctg u (x))' = u '(x)/(1+ u 2(x));

11. (arcctg u (x))' = - u '(x)/(1+ u 2(x)).







Дата добавления: 2015-06-12; просмотров: 473. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия