Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциал функции нескольких переменных





Пусть функция z = f(x,y), имеет в точке М000) частные производные f /x00) и f /у00).

Полным приращением функции z = f(x,y) в точке М000) называется разность

Пусть приращение функции z =f(x,y) можно представить в виде

где, то функция называется дифференцируемой в точке M 000).

Полным дифференциалом функции z=f(x,y) называется главная часть полного приращения , линейная относительно приращений её аргументов . Полный дифференциал функции (если он существует) равен сумме всех ее частных дифференциалов и вычисляется по формуле:

При достаточно малых (по абсолютному значению) приращениях аргументов, полное приращение функции можно с как угодно малой относительной погрешностью заменить ее полным дифференциалом. Дифференциалы dх и dy независимых аргументов функции х и у совпадают с их приращениями соответственно . Таким образом,

Раньше говорилось о том, что из существования частных производных в точке не следует непрерывности функции в этой точке. Однако можно записать

а это означает непрерывность функции в точке (х00). Следовательно, дифференцируемая в точке функция обязательно непрерывна в этой точке.

Из сказанного следует, что существование обеих частных производных функции в точке не означает, что функция дифферен­цируема в этой точке. В курсе математического анализа доказывается теорема, о функции, дифференцируемой в точке, если обе частные производные этой функции непрерывны в этой точке.

Так как дифференциал df даёт приближенное значение приращения функции при малых значениях приращений аргументов.

 

 

6.Дифференцирование сложной функции.

Пусть задана функция . Пусть далее аргумент этой функции является не независимой переменной ,а значением другой функции . Тогда функция называется сложной функцией.

Теорема. Если функция имеет производную в точке , а функция имеет производную в соответствующей точке , то функция имеет производную в точке и имеет место следующая формула: .

Таблица производных простейших элементарных функций

1. (u a(x))' = a u a-1(x) u '(x), в частности,

(1 /u (x)) ' = -u' (x) /u 2(x), () ' = u' (x) / 2 ;

2. (loga u (x))' = (u'(x)logae)/u(x) при 0<a№1, u(x)>0, в частности, (ln u (x))' = u'(x)/ u (x);

3. (a u (x))' = a u (x)ln a u '(x) при 0<a№1, в частности, (e u (x))' = u'(x)e u (x);

4. (sin u (x))' = cos u (x) u '(x);

5. (cos u (x))' = -sin u (x) u '(x);

6. (tg u (x))' = u '(x)/cos2 u (x) x№ p/2+p n, n=0,+-1,...;

7. (ctg u (x))' = - u '(x)/sin2 u (x) x№ p n, n=0,+-1,...;

8. (arcsin u (x))' = u '(x)/ , -1< u (x)<1;

9. (arccos u (x))' = - u '(x)/ , -1< u (x)<1;

10. (arctg u (x))' = u '(x)/(1+ u 2(x));

11. (arcctg u (x))' = - u '(x)/(1+ u 2(x)).







Дата добавления: 2015-06-12; просмотров: 473. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия