Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двойной и повторные интегралы





 

Двойной интеграл от функции f (x,y) обозначается как

где R - область интегрирования в плоскости O xy. Если определенный интеграл от функции одной переменной выражает площадь под кривой f (x) в интервале от x = a до x = b, то двойной интеграл выражает объем под поверхностью z = f (x,y) выше плоскости O xy в области интегрирования R

Формально двойной интеграл можно ввести как предел суммы Римана. Пусть, для простоты, область интегрирования R представляет собой прямоугольник (рисунок 2). Используя ряд чисел{ x 0, x 1,..., x m }, разобьем отрезок [ a, b ] на малые интервалы таким образом, чтобы выполнялось соотношение

Аналогично, пусть множество чисел является разбиением отрезка [ c, d ] вдоль оси O y, при котором справедливы неравенства

Суммой Римана функции f (x,y) над разбиением называется выражение

где - некоторая точка в прямоугольнике и .

Двойной интеграл от функции f (x,y) в прямоугольной области определяется как предел суммы Римана, при котором максимальные значения Δ xi и Δ yj стремятся к нулю:


Чтобы определить двойной интеграл в произвольной области R, отличной от прямоугольной, выберем прямоугольник , покрывающий область R, и введем функцию g (x,y), такую, что

Тогда двойной интеграл от функции f (x,y) в произвольной области R определяется как

Свойства двойного интеграла

Двойной интеграл обладает следующими свойствами:

 

 

  1. , где k - константа;

 

  1. Если в области R, то ;

 

  1. Если в области R и (рисунок 4), то ;

 

  1. Если на R и области R и S являются непересекающимися, то .
    Здесь означает объединение этих двух областей.

Повторными интегралами называются интегралы вида

 

В этом выражении сначала вычисляется внутренний интеграл, т.е. производится сначала интегрирование по переменной y (при этом переменная x считается постоянной величиной). В результате интегрирования по y получится некоторая функция по x:

 

.

 

Затем полученную функцию интегрируют по x:

Между двойными и повторными интегралами существует взаимосвязь, но сначала рассмотрим простые и сложные области. Область называется простой в каком-либо направлении, если любая прямая, проведенная в этом направлении, пересекает границу области не более чем в двух точках. В декартовой системе координат обычно рассматривают направления вдоль осей O x и O y. Если область является простой в обоих направлениях, то говорят коротко – простая область, без выделения направления. Если область не является простой, то говорят, что она сложная.

Любую сложную область можно представить в виде суммы простых областей. Соответственно, любой двойной интеграл можно представить в виде суммы двойных интегралов по простым областям. Поэтому в дальнейшем мы будем рассматривать, в основном, только интегралы по простым областям.

Теорема. Если область интегрирования D – простая в направлении оси Oy (см. рис.1.4а), то двойной интеграл можно записать в виде повторного следующим образом:

если область интегрирования D – простая в направлении оси Ox, то двойной интеграл можно записать в виде повторного следующим образом:

.

Если область интегрирования является правильной в обоих направлениях, то можно произвольно выбирать вид повторного интеграла, в зависимости от простоты интегрирования.

 

 







Дата добавления: 2015-06-12; просмотров: 491. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия