Пусть в некоторой области задана функция и точка . Проведем из точки вектор , направляющие косинусы которого . На векторе , на расстоянии от его начала рассмотрим точку , т.е. .
Будем предполагать, что функция и ее частные производные первого порядка непрерывны в области .
Предел отношения при называется производной от функции в точке по направлению вектора и обозначается , т.е. .
Для нахождения производной от функции в заданной точке по направлению вектора используют формулу: ,
где – направляющие косинусы вектора , которые вычисляются по формулам:
.
Пусть в каждой точке некоторой области задана функция .
Вектор, проекциями которого на оси координат являются значения частных производных этой функции в соответствующей точке, называется градиентом функции и обозначается или (читается «набла у»):.
При этом говорят, что в области определено векторное поле градиентов.
Для нахождения градиента функции в заданной точке используют формулу:
.
Свойства градиента
1. Производная в данной точке по направлению вектора имеет наибольшее значение, если направление вектора совпадает с направлением градиента. Это наибольшее значение производной равно .
2. Производная по направлению вектора, перпендикулярного к вектору , равна нулю.