Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поверхностный интеграл 2 типа (поток)





Рассмотрим векторное поле и поверхность S, которая описывается вектором

Предполагается, что функции x (u,v), y (u,v), z (u,v) являются непрерывно дифференцируемыми в некоторой области D (u,v), и что ранг матрицы

равен 2.
Обозначим через единичный нормальный вектор к поверхности S в точке (x,y,z). Если поверхность S гладкая и векторная функция непрерывна, то в каждой точке поверхности существуют два противоположно направленных единичных нормальных вектора:

Выбор одного из них называется ориентацией поверхности.

Если S является границей ограниченной области, то ее можно ориентировать внешней или внутренней нормалями. Поверхность S, ориентированную внешней нормалью, называют ее внешней стороной, а ориентированную внутренней нормалью, − ее внутренней стороной.

Поверхностный интеграл второго рода от векторного поля по ориентированной поверхности S (или поток векторного поля через поверхность S) может быть записан в одной из следующих форм:

· Если поверхность S ориентирована внешней нормалью, то

· Если поверхность S ориентирована внутренней нормалью, то

Величина называется векторным элементом поверхности. Точка обозначает скалярное произведение соответствующих векторов. Частные производные, входящие в последние формулы, вычисляются следующим образом:

Если поверхность S задана явно в виде уравнения z = z (x,y), где z (x,y) − дифференцируемая функция в области D (x,y), то поверхностный интеграл второго рода от векторного поля по поверхности S записывается в одной из следующих форм:

· Если поверхность S ориентирована внешней нормалью (k -компонент вектора нормали является положительным), то

· Если поверхность S ориентирована внутренней нормалью (k -компонент вектора нормали является отрицательным), то

Поверхностный интеграл второго рода можно записать также в координатной форме. Пусть P (x,y,z), Q (x,y,z), R (x,y,z) являются компонентами векторного поля . Введем cos α;, cos β;, cos γ; − направляющие косинусы внешней нормали к поверхности S. Тогда скалярное произведение равно

Следовательно, поверхностный интеграл можно записать в виде

Поскольку (рисунок 1), и, аналогично, , получаем следующую формулу для вычисления поверхностного интеграла II рода:

Если поверхность S задана в параметрической форме с помощью вектора , то последняя формула принимает вид

где (u,v) изменяются в пределах области интегрирования D (u,v).

   
   

Если поверхность S не представима в явном или параметрическом виде, то ее можно попробовать разбить на конечное число частей, каждая из которых представима в таком виде. В этом случае справедливо свойство аддитивности: поверхностный интеграл второго рода по поверхности S будет равен сумме интегралов по ее частям.







Дата добавления: 2015-06-12; просмотров: 507. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия