Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поверхностный интеграл 2 типа (поток)





Рассмотрим векторное поле и поверхность S, которая описывается вектором

Предполагается, что функции x (u,v), y (u,v), z (u,v) являются непрерывно дифференцируемыми в некоторой области D (u,v), и что ранг матрицы

равен 2.
Обозначим через единичный нормальный вектор к поверхности S в точке (x,y,z). Если поверхность S гладкая и векторная функция непрерывна, то в каждой точке поверхности существуют два противоположно направленных единичных нормальных вектора:

Выбор одного из них называется ориентацией поверхности.

Если S является границей ограниченной области, то ее можно ориентировать внешней или внутренней нормалями. Поверхность S, ориентированную внешней нормалью, называют ее внешней стороной, а ориентированную внутренней нормалью, − ее внутренней стороной.

Поверхностный интеграл второго рода от векторного поля по ориентированной поверхности S (или поток векторного поля через поверхность S) может быть записан в одной из следующих форм:

· Если поверхность S ориентирована внешней нормалью, то

· Если поверхность S ориентирована внутренней нормалью, то

Величина называется векторным элементом поверхности. Точка обозначает скалярное произведение соответствующих векторов. Частные производные, входящие в последние формулы, вычисляются следующим образом:

Если поверхность S задана явно в виде уравнения z = z (x,y), где z (x,y) − дифференцируемая функция в области D (x,y), то поверхностный интеграл второго рода от векторного поля по поверхности S записывается в одной из следующих форм:

· Если поверхность S ориентирована внешней нормалью (k -компонент вектора нормали является положительным), то

· Если поверхность S ориентирована внутренней нормалью (k -компонент вектора нормали является отрицательным), то

Поверхностный интеграл второго рода можно записать также в координатной форме. Пусть P (x,y,z), Q (x,y,z), R (x,y,z) являются компонентами векторного поля . Введем cos α;, cos β;, cos γ; − направляющие косинусы внешней нормали к поверхности S. Тогда скалярное произведение равно

Следовательно, поверхностный интеграл можно записать в виде

Поскольку (рисунок 1), и, аналогично, , получаем следующую формулу для вычисления поверхностного интеграла II рода:

Если поверхность S задана в параметрической форме с помощью вектора , то последняя формула принимает вид

где (u,v) изменяются в пределах области интегрирования D (u,v).

   
   

Если поверхность S не представима в явном или параметрическом виде, то ее можно попробовать разбить на конечное число частей, каждая из которых представима в таком виде. В этом случае справедливо свойство аддитивности: поверхностный интеграл второго рода по поверхности S будет равен сумме интегралов по ее частям.







Дата добавления: 2015-06-12; просмотров: 507. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия