Формула Стокса
Пусть S является гладкой поверхностью, ограниченной гладкой кривой C. Тогда для любой непрерывно дифференцируемой векторной функции
справедлива теорема Стокса:
где
− ротор векторного поля Символ Будем предполагать, что ориентация поверхности и направление обхода кривой соответствуют правилу правой руки. В этом случае при обходе кривой поверхность всегда остается слева, если голова направлена в ту же сторону, что и вектор нормали Теорема Стокса связывает между собой криволинейные интегралы второго рода и поверхностные интегралы второго рода. В координатной форме теорема Стокса может быть записана в следующем виде:
20.Формула Остроградского-Гаусса. Обозначим через G трехмерное тело, ограниченное кусочно-непрерывной, гладкой, замкнутой поверхностью S с внешней нормалью. Предположим, что задано векторное поле
компоненты которого имеют непрерывные частные производные. Согласно формуле Остроградского-Гаусса,
где через
обозначена дивергенция векторного поля Формула Остроградского-Гаусса связывает поверхностные интегралы второго рода с соответствующими тройными интегралами. Данную формулу можно записать также в координатной форме:
В частном случае, полагая
|