Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывность суммы ряда





Теорема.

Если все члены ряда (1) - непрерывные на [a;b] ф-ции, а ряд (1) сх-ся равномерно на [a;b], то его сумма S(x) также непрерывна на отрезке [a;b].

 

Док-во: Пусть - произв.точка [a;b]. Для опр-ности будем считать, что (a;b). Нужно док-ть, что S(x)= непрерывна в , т.е < (2), [a;b].

По усл-ю, ряд (1) равномерно сх-ся на [a;b], т.е

n [a;b] < (3), где = .

Фиксируем номер , тогда при n= из (3) получаем: < (4).

В частности, при x= находим < (5).

Ф-ция (x) непрерывна в как сумма конечного числа непрерывных ф-ций. По опр-ю непрерывности [a;b] < (6).

Восп. рав-вом S(x)-S()=(S(x)- (x))+( (x)- ())+( ()-S()).

Отсюда получаем, исп. (4)-(6) и нер-во треугольника: < , для [a;b],

т.е справедливо утв-е (2). В силу произвольности точки ф-ция S(x) непрерывна на отрезке [a;b].

 

31.Интегрирование и дифференцирование ряда.

Рассмотрим степенной ряд , имеющий радиус сходимости R > 0:

Функция является непрерывной функцией при | x | < R. Степенной ряд внутри интервала сходимости можно дифференцировать почленно. При этом производная степенного ряда выражается формулой

Степенной ряд можно также почленно интегрировать на отрезке, который расположен внутри интервала сходимости. Следовательно, если − R < b < x < R, то выполняется равенство

Если ряд интегрируется на отрезке [0; x ], то справедлива формула:

 







Дата добавления: 2015-06-12; просмотров: 462. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия