Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод формулы Тейлора





 

Теорема 1 (Тейлора).

Пусть функция двух переменных непрерывна со всеми частными производными до порядка включительно в некоторой -окрестности точки . Тогда справедлива формула формулой Тейлора для функции двух переменных

, (1)

где , ; .

► Рассмотрим вспомогательную функцию

, ,

которая является сложной функцией независимой переменной и имеет -ю производную по на отрезке .

Согласно формуле Тейлора для функции одной переменной с остаточным членом в форме Лагранжа имеем

,

(2)

где .

Отсюда при получим

,

где .

Найдем производные функции . Так как и , то первая производная есть:

,

вторая –

.

По индукции получаем:

, ,

.

Тогда

,

,

,

…………………………………………………

,

.

Подставляя в формулу (2), имеем

,

где .◄

Следствие. При условиях теоремы 1 имеет место формула Тейлора с остаточным членом в форме Пеано

. (3)

► Остаточный член формулы Тейлора в форме Лагранжа для функции

является при бесконечно малой величиной более высокого порядка малости по сравнению с , где . Поэтому остаточный член можно представить в форме Пеано

. ◄

 

 







Дата добавления: 2015-06-12; просмотров: 745. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия