Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вывод формулы Тейлора





 

Теорема 1 (Тейлора).

Пусть функция двух переменных непрерывна со всеми частными производными до порядка включительно в некоторой -окрестности точки . Тогда справедлива формула формулой Тейлора для функции двух переменных

, (1)

где , ; .

► Рассмотрим вспомогательную функцию

, ,

которая является сложной функцией независимой переменной и имеет -ю производную по на отрезке .

Согласно формуле Тейлора для функции одной переменной с остаточным членом в форме Лагранжа имеем

,

(2)

где .

Отсюда при получим

,

где .

Найдем производные функции . Так как и , то первая производная есть:

,

вторая –

.

По индукции получаем:

, ,

.

Тогда

,

,

,

…………………………………………………

,

.

Подставляя в формулу (2), имеем

,

где .◄

Следствие. При условиях теоремы 1 имеет место формула Тейлора с остаточным членом в форме Пеано

. (3)

► Остаточный член формулы Тейлора в форме Лагранжа для функции

является при бесконечно малой величиной более высокого порядка малости по сравнению с , где . Поэтому остаточный член можно представить в форме Пеано

. ◄

 

 







Дата добавления: 2015-06-12; просмотров: 745. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия