Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Признаки сравнения (неравенства)





Метод исследования несобственного интеграла на сходимость, основанный на вычислении предела первообразной функции, далеко не всегда может рассматриваться как наиболее оптимальный. На практике обычно прибегают к признакам сравнения или признакам сходимости. Суть типичного признака сравнения заключается в следующем.

Признак сравнения Пусть функции f (x) и g (x) определены на промежутке (A, B) и удовлетворяют неравенству , где A и B – любые числа (не обязательно конечные). Тогда
1) из сходимости интеграла вытекает сходимость интеграла .
2) расходимость интеграла влечет расходимость интеграла .

Другими словами, исследуемый на сходимость интеграл сравнивается с эталонным. Если эталонный интеграл больше исследуемого и сходится, то сходится и исследуемый. Если же эталонный интеграл меньше исследуемого и расходится, то расходится и исследуемый.

Если существует отличный от нуля предел функции f (x) при , то интеграл расходится. Однако равенство нулю такого предела не является достаточным условием сходимости этого интеграла. Например, , тогда как интеграл расходится.

Признак сравнения 1 можно переформулировать, положив в основу сопоставление быстроты изменения исследуемой и эталонной функций в окрестности соответствующей точки "несобственности" (в том числе и бесконечно удаленной).

 

 

23.Предельный признак сравнения.
Признак сравнения Если существует предел , то
при интегралы и сходятся или расходятся одновременно;
при сходимость интеграла влечет за собой сходимость интеграла ;
при из расходимости интеграла вытекает расходимость интеграла .
Аналогичным образом формулируются признаки сходимости интегралов вида .
С геометрической точки зрения сходимость интеграла означает, что площадь области, заключенной между кривой y = f (x) и осью абсцисс, конечна.

 







Дата добавления: 2015-06-12; просмотров: 407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия