Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

MАТЕМАТИЧЕСКАЯ СТАТИСТИКА





С О Д Е Р Ж А Н И Е

 

1. Основные понятия математической статистики.

2. Оценка параметров генеральной совокупности. Критерии оценок.

3. Проверка гипотез.

4. Непараметрические критерии.

Математическая статистика – это раздел математики, изучающий приближённые методы отыскания

законов распределения и числовых характеристик по результатам эксперимента.

В математической статистике выделяют два основных направления исследований:

1. Оценка параметров генеральной совокупности.

2. Проверка статистических гипотез.

Основными понятиями математической статистики являются: генеральная совокупность, выборка, теоретическая функция распределения.

ГЕНЕРАЛЬНАЯ СОВОКУПНОСТЬ – это множество всех мыслимых значений наблюдений, однородных относительно некоторого признака, которые могли быть сделаны. Число всех наблюдений, составляющих генеральную совокупность, называется её объёмом N.

ВЫБОРКА – это совокупность случайно отобранных наблюдений. Объём выборки n. Выборка обязательно должна удовлетворять условию репрезентативности, т.е. давать обоснованное представление о генеральной совокупности. Каждый элемент выборки называется вариантой. Число наблюдений варианты называется частотой встречаемости. Последовательность вариант, записанных в возрастающем порядке, называется вариационным рядом.

СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ – это совокупность вариант и соответствующих им частот

Для наглядного представления статистического распределения пользуются графическим изображением вариационных рядов: полигоном и гистограммой.

ГИСТОГРАММА ЧАСТОТ – это ступенчатая фигура, состоящая из смежных прямоугольников, построенных на одной прямой, основания которых одинаковы и равны ширине класса, а высота равна или частоте попадания в интервал или относительной частоте = . Ширину интервала i можно определить по формуле Стерджеса: i= , где - максимальное, а - минимальное значение вариант, n – объём статистической совокупности.

ПОЛИГОН ЧАСТОТ – ломаная линия, отрезки которой соединяют точки с координатами .

Характеристики положения

МОДА ) – это такое значение варианты, что предшествующее и следующее за ним значения имеют меньшие частоты встречаемости.

Для одномодальных распределений мода – это наиболее часто встречающаяся варианта в данной совокупности.

Например, мода распределения:

 

       
       

 

равна 18.

 

Для определения моды интервальных рядов служит формула:

 

= + i (, где

- нижняя граница модельного класса, т.е. класса с наибольшей частотой встречаемости

n1-

- частота модального класса;

- частота класса, следующего за модальным;

классового интервала.

 

МЕДИАНА Me это значение признака, относительно которого ряд распределения делится на 2 равные по объёму части. Например, в распределении:

12 14 16 18 20 22 24 26 28 медианой будет центральная варианта, т.е. Ме =20, так как по обе стороны от неё отстоит по 4варианты.

ВЫБОРОЧНАЯ СРЕДНЯЯ – это среднее арифметическое значение статистического ряда

= .

ВЫБОРОЧНАЯ ДИСПЕРСИЯ – среднее арифметическое квадратов отклонения вариант от их среднего значения: =

СРЕДНЕЕ КВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ – это квадратный корень из выборочной дисперсии:

= .

 

КОЭФФИЦИЕНТ ВАРИАЦИИ CV = ∙ 100%.

 

КОЭФФИЦИЕНТ ВАРИАЦИИ - это мера относительной изменчивости случайной величины, т.е. можно сравнивать разнородные величины, например, частоту сердечных сокращений (ЧСС, уд/мин), артериальное давление (АД, мм.рт. ст.) и температуру ( С) в единых единицах- процентах.

ВАРИАЦИОННЫЙ РАЗМАХ Δ = - - это разность между наибольшим и наименьшим значениями признака.

 







Дата добавления: 2015-06-15; просмотров: 2172. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия