Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Полярные координаты





Возьмем на плоскости прямую. Выберем на ней точку и единичный вектор а также некоторое положительное направление обхода. Пусть - произвольная точка плоскости, отличная от Положение этой точки однозначно определено заданием длины отрезка и углом между векторами и Числа и называются полярными координатами точки При этом называется полярным радиусом, а - полярным углом. Если имеет полярные координаты и то пишем Точка называется полюсом, а луч - полярной осью. Точка вектор и положительное направление обхода плоскости образуют полярную систему координат.

Заметим, что полярный угол имеет бесконечное много значений. Если совпадает с то а значение считаем неопределенным.

Пусть - прямоугольная декартова система, где вектор получен из вектора и поворотом на 90 Полярные и прямоугольные декартовы координаты точки связаны соотношениями Иногда рассматривают обобщенные полярные координаты. В этом случае считаем, что полярный радиус может принимать и отрицательные значения. Например, точка с полярными координатами (3; 210 ) имеет обобщенные полярные координаты (-3; 30 ).

Найдем полярное уравнение прямой на плоскости. Пусть прямая задана нормальным уравнением Выразив переменные через полярные координаты, получим или Это и есть полярное уравнение прямой на плоскости.







Дата добавления: 2015-06-15; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия