Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение полярных координат





Кроме декартовых коор­динат очень употребительны также полярные координаты на пло­скости. Они особенно удобны в тех вопросах, где мы имеем дело с вра­щением.

Для задания полярной системы координат выбирают на плоскости точ­ку Р, называемую полюсом, и полупря­мую РА, исходящую из этой точки, называемую полярной осью (черт.). Кроме того, задается масштабная еди­ница для измерения расстояний точек плоскости от полюса. Полярным радиусом точки М называют отрезок, соединяющий полюс с этой точкой. Полярными координатами точки М являются угол , отсчитываемый от полярной оси РА про­тив часовой стрелки до полярного радиуса РМ точки М, и длина этого радиуса, измеренная в выбранной масштабной единице.

Иногда еще вводят правило знаков для координаты , а именно, точкой с данным углом и отрицательным считают точку М , симметричную относительно полюса с точкой М, имеющей то же и положительную длину |полярного радиуса.

2. Формулы, связывающие полярные и прямоугольные коор­динаты. Очевидно, что если взять правую прямоугольную систему координат х, у, у которой начало О совпадает с полюсом Р рас­сматриваемой полярной системы координат, положительная полуось х идет по полярной оси и масштабная единица — та же самая, что и у заданной полярной системы (черт. 228), то имеют место следующие формулы пре­образования, связывающие эти декартовы и полярные координаты: х = cos , x = sin ,

= , = arctg

В полярных координатах (r; ) окружность радиуса R с цен­тром в полюсе изображается уравнением r = R.

В тех же координатах (r; ) окружность радиуса R с центром в точке (R; 0) имеет уравнение r = 2Rcos .

Иногда бывает удобно вместо уравнения линии, связывающего прямоугольные координаты х и у, рассматривать так называемые параметрические уравнения линии, дающие выражения текущих ко­ординат х и у в виде функций от некоторой переменной величины t (параметра). Параметрические уравнения играют важную роль, на­пример, в механике, где координаты х и у движущейся точки М(х; у) рассматриваются как функции времени {уравнения движения).

 

3. Примеры уравнений ли­ний в полярных координатах.

Рассмотрим два примера урав­нений линий в полярных коорди­натах.

Спираль Архимеда. Уравнение ее

=c

где с —некоторая константа. Эта линия есть спираль, являющаяся траекторией точки, равномерно удаляющейся от полюса Р по лучу, равномерно поворачивающемуся вокруг полюса—в положительном направлении если с>0, и в отрицательном, если с < 0. Внешний вид этой спирали, которую легко построить по точкам, изображен на черт. 229, где взято с>0. Если принять еще приведенное выше условие о знаке , то получается допол­нительная часть спирали, симметричная по отношению к полюсу P с изображенной на чертеже. Длина d отрезков между последовательными точками пересечения спирали с полярной осью и ее продолжением посто­янна и равна 2 с, если измеряется в радианах.

Гиперболическая с п и р а л ь. Уравнение ее

= k

где к — константа. Внешний вид этой спирали, которую легко построить по точкам, для положительных дан на рис (при этом предполагается что k > 0). Спираль Архимеда имеет бесконечно много витков вокруг по­люса Р, уходящих в бесконечность. Гиперболическая спираль, как нетрудно показать, при удалении в бесконечность асимптотически приближается к прямой, параллельной полярной оси и находящейся от нее на расстоянии, равном к. Зато гиперболическая спираль делает бесконечно много оборотов вокруг полюса Р, бесконечно к нему приближаясь.

 







Дата добавления: 2015-06-15; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия